Assignment \#11

Due on Monday, March 28, 2011
Read Section 2.6 on Curves and Simple Arcs and Orientation, pp. 45-56, in Baxandall and Liebek's text.
Read Section 2.7 on Path Length and Length of Simple Arcs, pp. 59-66, in Baxandall and Liebek's text.
Read Section 5.1.1 on Arc Length in the class Lecture Notes (pp. 64-67).

Background and Definitions

- (Reparametrizations) Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a differentiable, one-to-one path. Suppose also that $\sigma^{\prime}(t)$, is never the zero vector. Let $h:[c, d] \rightarrow[a, b]$ be a differentiable, one-to-one and onto map such that $h^{\prime}(t) \neq 0$ for all $t \in[c, d]$. Define

$$
\gamma(t)=\sigma(h(t)) \quad \text { for all } t \in[c, d] .
$$

$\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ is a called a reparametrization of σ

- (Arc Length Parameter) Let I denote an open interval in \mathbb{R}, and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a parametrization of a curve C. For fixed $a \in I$, define

$$
\begin{equation*}
s(t)=\int_{a}^{t}\left\|\sigma^{\prime}(\tau)\right\| \mathrm{d} \tau \quad \text { for all } t \in I \tag{1}
\end{equation*}
$$

The parameter $s=s(t)$ measures the length along the curve C from the point $\sigma(a)$ to the point $\sigma(t)$.

Do the following problems

1. Show that the arc length parameter defined in (1) is differentiable on I and compute $s^{\prime}(t)$ for all $t \in I$. Deduce that $s(t)$ is a strictly increasing function of t in I.
2. Let $\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ be a reparametrization of $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$. of σ
(a) Show that γ is a differentiable, one-to-one path.
(b) Compute $\gamma^{\prime}(t)$ and show that it is never the zero vector.
(c) Show that σ and γ have the same image in \mathbb{R}^{n}.
3. Let C be a curve parametrized by

$$
\sigma(t)=\sigma(t)=\left(e^{k t} \cos t, e^{k t} \sin t\right), \quad \text { for } t \in[0,2 \pi]
$$

where $k \neq 0$. Compute the arc length of C.
4. A particle is following a path in three-dimensional space given by

$$
\sigma(t)=\left(e^{t}, e^{-t}, 1-t\right) \quad \text { for } \quad t \in \mathbb{R} .
$$

At time $t_{o}=1$, the particle flies off on a tangent.
(a) Where will the particle be at time $t_{1}=2$?
(b) Will the particle ever hit the $x y$-plane? Is so, find the location on the $x y$ plane where the particle hits.
5. Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, y \geqslant 0\right\}$; i.e., C is the upper unit semi-circle. C can be parametrized by

$$
\sigma(\tau)=\left(\tau, \sqrt{1-\tau^{2}}\right) \quad \text { for } \quad-1 \leqslant \tau \leqslant 1
$$

(a) Compute $s(t)$, the arclength along C from $(-1,0)$ to the point $\sigma(t)$, for $-1 \leqslant t \leqslant 1$.
(b) Compute $s^{\prime}(t)$ for $-1<t<1$ and sketch the graph of s as function of t.
(c) Show that $\cos (\pi-s(t))=t$ for all $-1 \leqslant t \leqslant 1$, and deduce that

$$
\sin (s(t))=\sqrt{1-t^{2}} \quad \text { for all }-1 \leqslant t \leqslant 1
$$

