Assignment \#13

Due on Friday, April 1, 2011
Read Section 4.4 on The Chain Rule, pp. 197-202, in Baxandall and Liebek's text.
Read Section 4.6 on Derivatives of Compositions in the class Lecture Notes (pp. 56-60).

Do the following problems

1. Let x and y be functions of u and $v: x=x(u, v), y=y(u, v)$, and let $f(x, y)$ be a scalar field. Find $\partial f / \partial u$ and $\partial f / \partial v$ in terms of $\partial f / \partial x, \partial f / \partial y, \partial x / \partial u$, $\partial x / \partial v, \partial y / \partial u$, and $\partial y / \partial v$.
2. For f, x and y as in Problem 1, express $\frac{\partial^{2} f}{\partial u^{2}}$ in terms of the partial derivatives of f with respect to x and y and the partial derivatives of x and y with respect to u. Assume that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.
3. Let $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be differentiable functions such that $(F \circ G)(x)=x, \quad$ for all $x \in \mathbb{R}^{n}$.
Put $y=G(x)$ for all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, where $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. Apply the Chain Rule to show that

$$
\frac{\partial f_{i}}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{j}}+\frac{\partial f_{i}}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{j}}+\cdots+\frac{\partial f_{i}}{\partial y_{m}} \frac{\partial y_{m}}{\partial x_{j}}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

where $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are the components of the vector field F.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=x^{2}+y^{2}+x y$, for all $(x, y) \in \mathbb{R}^{2}$, and assume that $x=r \cos \theta$ and $y=r \sin \theta$ for $r \geqslant 0$ and $\theta \in \mathbb{R}$. Put $z=f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$. Use the Chain Rule to compute $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$
5. Let f be a scalar field defined on (x, y) where $x=r \cos \theta, y=r \sin \theta$. Show that

$$
\nabla f=\frac{\partial f}{\partial r} \overrightarrow{\mathbf{u}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{\mathbf{u}}_{\theta},
$$

where $\overrightarrow{\mathbf{u}}_{r}=(\cos \theta, \sin \theta)$ and $\overrightarrow{\mathbf{u}}_{\theta}=(-\sin \theta, \cos \theta)$.
Hint: First find $\partial f / \partial r$ and $\partial f / \partial \theta$ in terms of $\partial f / \partial x$ and $\partial f / \partial y$ and then solve for $\partial f / \partial x$ and $\partial f / \partial y$ int terms of $\partial f / \partial r$ and $\partial f / \partial \theta$.

