Assignment #14

Due on Friday, April 8, 2011

Read Section 5.2 on *Integral of a scalar Field Along a Path*, pp. 269–279, in Baxandall and Liebek's text.

Read Section 5.1 on the *Path Integral* in the class Lecture Notes (pp. 61–68).

Background and Definitions

• Let U be an open subset of \mathbb{R}^n and $f: U \to \mathbb{R}$ be a continuous scalar field. Let $C \subset U$ be a C^1 simple curve. We define the integral of f over C, denoted $\int_C f \, \mathrm{d}s$, to be

$$\int_C f \, \mathrm{d}s = \int_a^b f(\sigma(t)) \|\sigma'(t)\| \, \mathrm{d}t,$$

where $\sigma \colon [a, b] \to \mathbb{R}^n$ is any C^1 parametrization of C.

• A curve, C, is said to be piece-wise C^1 if C can be decomposed into a finite union of C^1 simple curves, C_1, C_2, \ldots, C_k :

$$C = \bigcup_{i=1}^{k} C_i.$$

If $C \subset U$, where U is an open subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is a continuous scalar field, we define the integral of f over C by

$$\int_C f \, \mathrm{d}s = \sum_{i=i}^k \int_{C_i} f \, \mathrm{d}s.$$

Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

$$\sigma(t) = (\cos t, t, \sin t) \quad \text{for } 0 \le t \le \pi.$$

Let $f(x, y, z) = x^2 + y^2 + z^2$ for all $(x, y, z) \in \mathbb{R}^3$. Evaluate

$$\int_C f.$$

Math 107. Rumbos

2. Find the mass of a wire that is parametrized by

$$C = \left\{ \left(\frac{3}{2}t^2, (1+2t)^{3/2}\right) \ \Big| \ 0 \leqslant t \leqslant 2 \right\}$$

and has a density given by $\rho(x, y) = 2x + 1$.

- 3. Let f(x,y) = y for all $(x,y) \in \mathbb{R}^2$. For each of the following curves, C, in the xy-plane, evaluate $\int_C f$.
 - (a) C is the segment along the x axis from (0,0) to (1,0).
 - (b) C is the segment along the y axis from (0,0) to (0,1).
 - (c) C is the unit circle in \mathbb{R}^2 .
- 4. Evaluate $\int_C (x^3 yz) \, ds$, where C is the intersection of the planes x + y z = 1and z = 3x from x = 0 to x = 1.
- 5. Let C denote the boundary of the square

$$R = \{ (x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 1, -1 \leqslant y \leqslant 1 \}.$$

Evaluate the integral of $f(x, y) = xy^2$, for $(x, y) \in \mathbb{R}^2$, over C.

Note: Observe that C is not a C^1 curve, but it can be decomposed into an union of four simple, C^1 curves.