Assignment #17

Due on Wednesday, April 20, 2011

Read Section 11.2 on *Differential* 1–*Forms*, pp. 523–526, in Baxandall and Liebek's text.

Read Section 5.5 on *Differential Forms* in the class Lecture Notes (pp. 75–87).

Background and Definitions

- (Differential 0-Forms) A differential 0 form in an open set $U \subseteq \mathbb{R}^n$ is a C^{∞} function, $f: U \to \mathbb{R}^n$. A differential 0-form acts on points, p, in U be means of function evaluation: $f_p = f(p)$, for all $p \in U$.
- (Differential 1-Forms) Let U denote an open subset of \mathbb{R}^n and let $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ denote the space of real valued linear transformations defined in \mathbb{R}^n . A differential 1-form, ω , on U is a (smooth) map $\omega \colon U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ which assigns to each $p \in U$, and a linear transformation $\omega_p \colon \mathbb{R}^n \to \mathbb{R}$ given by

$$\omega_p(h) = F_1(p)h_1 + F_2(p)h_2 + \dots + F_n(p)h_n$$

for all $h = (h_1, h_2, \ldots, h_n) \in \mathbb{R}^n$, where the vector field $F = (F_1, F_2, \ldots, F_n)$ is a smooth vector field.

Differential 1 forms act on oriented, smooth curves, C, by means on integration; we write

$$\omega(C) = \int_C \omega = \int_C F_1 \, dx_1 + F_2 \, dx_2 + \dots + F_n \, dx_n.$$

Do the following problems

- 1. Evaluate the differential 1-form $\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$ in the directed line segment from $P_o(1, 1)$ to $P_1(0, 1)$.
- 2. A differential 1-form, ω , is said to be exact if there exists a 0-form, f, such that $\omega = df$ in the domain of definition of f and ω . Determine which of the following 1-forms are exact.
 - (a) $yz \, dx + xz \, dy + xy \, dz$
 - (b) $xy \, \mathrm{d}x + yz \, \mathrm{d}y + xz \, \mathrm{d}z$
 - (c) $(2xyz + z) dx + (x^2z + 1) dy + (x^2y + x) dz$

Math 107. Rumbos

3. Show that a differential 1–form

$$\omega = F_1 \ dx_1 + F_2 \ dx_2 + \dots + F_n \ dx_n$$

is exact if and only if the vector field $F = F_1 e_1 + F_2 e_2 + \cdots + F_n e_n$ is the gradient of a smooth function $f: U \to \mathbb{R}$.

- 4. Let $\omega = -y \, dx + x \, dy$. Evaluate the differential 1-form on the unit circle, C, oriented in the counterclockwise sense.
- 5. Let ω demote a differential 1-form in \mathbb{R}^n , and let P_1 and P_2 be any two points in \mathbb{R}^n . Show that

$$\int_{[P_1,P_2]} \omega = -\int_{[P_2,P_1]} \omega.$$