Assignment \#17

Due on Wednesday, April 20, 2011
Read Section 11.2 on Differential 1-Forms, pp. 523-526, in Baxandall and Liebek's text.

Read Section 5.5 on Differential Forms in the class Lecture Notes (pp. 75-87).

Background and Definitions

- (Differential 0-Forms) A differential 0 form in an open set $U \subseteq \mathbb{R}^{n}$ is a C^{∞} function, $f: U \rightarrow \mathbb{R}^{n}$. A differential 0 -form acts on points, p, in U be means of function evaluation: $f_{p}=f(p)$, for all $p \in U$.
- (Differential 1-Forms) Let U denote an open subset of \mathbb{R}^{n} and let $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ denote the space of real valued linear transformations defined in \mathbb{R}^{n}. A differential 1-form, ω, on U is a (smooth) map $\omega: U \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ which assigns to each $p \in U$, and a linear transformation $\omega_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
\omega_{p}(h)=F_{1}(p) h_{1}+F_{2}(p) h_{2}+\cdots+F_{n}(p) h_{n}
$$

for all $h=\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathbb{R}^{n}$, where the vector field $F=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is a smooth vector field.
Differential 1 forms act on oriented, smooth curves, C, by means on integration; we write

$$
\omega(C)=\int_{C} \omega=\int_{C} F_{1} d x_{1}+F_{2} d x_{2}+\cdots+F_{n} d x_{n}
$$

Do the following problems

1. Evaluate the differential 1-form $\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$ in the directed line segment from $P_{o}(1,1)$ to $P_{1}(0,1)$.
2. A differential 1 -form, ω, is said to be exact if there exists a 0 -form, f, such that $\omega=d f$ in the domain of definition of f and ω. Determine which of the following 1 -forms are exact.
(a) $y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} z$
(b) $x y \mathrm{~d} x+y z \mathrm{~d} y+x z \mathrm{~d} z$
(c) $(2 x y z+z) \mathrm{d} x+\left(x^{2} z+1\right) \mathrm{d} y+\left(x^{2} y+x\right) \mathrm{d} z$
3. Show that a differential 1-form

$$
\omega=F_{1} d x_{1}+F_{2} d x_{2}+\cdots+F_{n} d x_{n}
$$

is exact if and only if the vector field $F=F_{1} e_{1}+F_{2} e_{2}+\cdots+F_{n} e_{n}$ is the gradient of a smooth function $f: U \rightarrow \mathbb{R}$.
4. Let $\omega=-y d x+x d y$. Evaluate the differential 1-form on the unit circle, C, oriented in the counterclockwise sense.
5. Let ω demote a differential 1-form in \mathbb{R}^{n}, and let P_{1} and P_{2} be any two points in \mathbb{R}^{n}. Show that

$$
\int_{\left[P_{1}, P_{2}\right]} \omega=-\int_{\left[P_{2}, P_{1}\right]} \omega .
$$

