Assignment #6

Due on Monday, February 14, 2011

Read Section 4.2 on *Continuity and Limits* in Baxandall and Liebek's text (pp. 185–188).

Read Section 3.3 on *Continuous Functions* in the class Lecture Notes (pp. 29–35).

Background and Definitions

- (Continuous Function) Let U denote an open subset of \mathbb{R}^n . A function $F: U \to \mathbb{R}^m$ is said to be continuous at $x \in U$ if and only if $\lim_{\|y-x\|\to 0} \|F(y) F(x)\| = 0$.
- (Image) If $A \subseteq U$, the image of A under the map $F: U \to \mathbb{R}^m$, denoted by F(A), is defined as the set $F(A) = \{y \in \mathbb{R}^m \mid y = F(x) \text{ for some } x \in A\}.$
- (Pre-image) If $B \subseteq \mathbb{R}^m$, the pre-image of B under the map $F: U \to \mathbb{R}^m$, denoted by $F^{-1}(B)$, is defined as the set $F^{-1}(B) = \{x \in U \mid F(x) \in B\}$. Note that $F^{-1}(B)$ is always defined even if F does not have an inverse map.

Do the following problems

1. Use the triangle inequality to prove that, for any x and y in \mathbb{R}^n ,

$$|||y|| - ||x||| \le ||y - x||.$$

Use this inequality to deduce that the function $f \colon \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = ||x||$$
 for all $x \in \mathbb{R}^n$

is continuous on \mathbb{R}^n .

2. Let f(x, y) and g(x, y) denote two functions defined on a open region, D, in \mathbb{R}^2 . Prove that the vector field $F: D \to \mathbb{R}^2$, defined by

$$F\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}f(x,y)\\g(x,y)\end{pmatrix}$$
 for all $\begin{pmatrix}x\\y\end{pmatrix} \in \mathbb{R}^2$,

is continuous on D if and only f and g are both continuous on D.

Math 107. Rumbos

- 3. Let U denote an open subset of \mathbb{R}^n and let $F: U \to \mathbb{R}^m$ and $G: U \to \mathbb{R}^m$ be two given functions.
 - (a) Explain how the sum F + G is defined.
 - (b) Prove that if both F and G are continuous on U, then their sum is also continuous.

(Suggestion: The triangle inequality might come in handy.)

4. In each of the following, given the function $F: U \to \mathbb{R}^m$ and the set B, compute the pre-image $F^{-1}(B)$.

(a)
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
, $F\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x^2 + y^2\\ x^2 - y^2 \end{pmatrix}$, and $B = \left\{ \begin{pmatrix} 1\\ 0 \end{pmatrix} \right\}$.
(b) $f: D' \to \mathbb{R}$,

$$f(x,y) = \frac{1}{\sqrt{1 - x^2 - y^2}}, \quad \text{for } (x,y) \in D'$$

where $D' = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1\}$ (the punctured unit disc), $B = \{1\}.$

- (c) $f: D' \to \mathbb{R}$ is as in part (b), and $B = \{2\}$.
- (d) $f: D' \to \mathbb{R}$ is as in part (b), and $B = \{1/2\}$.
- 5. Compute the image the given sets under the following maps
 - (a) $\sigma \colon \mathbb{R} \to \mathbb{R}^2$, $\sigma(t) = (\cos t, \sin t)$ for all $t \in \mathbb{R}$. Compute $\sigma(\mathbb{R})$.
 - (b) $f: D' \to \mathbb{R}$ and D' are as given in part (b) of the previous problem. Compute f(D').