Assignment \#9

Due on Monday, February 28, 2011

Read Section 3.3 on Linear Approximation and Differentiability, pp. 113-123, in Baxandall and Liebek's text.
Read Section 4.3 on Differentiable Scalar Fields in the class Lecture Notes (pp. 44-49).

Do the following problems

1. Let $U=\mathbb{R}^{n} \backslash\{\mathbf{0}\}=\left\{v \in \mathbb{R}^{n} \mid v \neq \mathbf{0}\right\}$ and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\|v\|$ for all $v \in \mathbb{R}$.
(a) Prove that f is differentiable on U.
(b) Prove that f is not differentiable at the origin in \mathbb{R}^{n}.
2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be give by $f(x, y, z)=x^{2} y+y^{2} z+z^{2} x$, for all $(x, y, z) \in \mathbb{R}^{3}$. Compute all the first partial derivatives of f and verify that

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial f}{\partial z}=3 f
$$

3. Find the gradient of f for each of the following scalar fields:
(a) $f(x, y, z)=x e^{y z}$,
(b) $f(x, y, z)=1 / \sqrt{x^{2}+y^{2}+z^{2}}, \quad(x, y, z) \neq(0,0,0)$.
4. Let $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right), & \text { if }(x, y) \neq(0,0) ; \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$
(a) Show that the partial derivatives of f with respect to x and y do exist at $(0,0)$, and compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
(b) Show that the partial derivatives of f with respect to x and y are not continuous at $(0,0)$.
5. Let f be as in the previous problem. Show that f is differentiable at $(0,0)$, and compute $\operatorname{Df}(0,0)$.
