Exam 1

March 4, 2011

Name: _

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

- 1. The points P(1,0,0), Q(0,1,0) and R(0,0,1) determine a unique plane in three dimensional Euclidean space, \mathbb{R}^3 .
 - (a) Give the equation of the plane determined by P, Q and R.
 - (b) Give the parametric equations of the line through the point (0, 0, 0) which is orthogonal to the plane determined by P, Q and R.
 - (c) Find the intersection between the line found in part (b) above and the plane determined by P, Q and R.
 - (d) Find the (shortest) distance from the point (0, 0, 0) to the plane determined by P, Q and R, and give the coordinates of the point in the plane which is closest to the origin. Justify your answers
- 2. Let U denote an open subset of \mathbb{R}^n , and let $F: U \to \mathbb{R}^m$ be a vector valued function defined on U.
 - (a) State precisely what it means for F to be continuous at $u \in U$.
 - (b) Let \hat{u} denote a unit vector in \mathbb{R}^n and define $F \colon \mathbb{R}^n \to \mathbb{R}^n$ by $F(v) = P_{\hat{u}}(v)$, the orthogonal projection of v onto the direction of \hat{u} , for all $v \in \mathbb{R}^n$. Prove that F is continuous on \mathbb{R}^n
- 3. Let U denote an open subset of \mathbb{R}^n , and let $f: U \to \mathbb{R}$ be a scalar field defined on U.
 - (a) Define what it means for f to be differentiable at $u \in U$.
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = \sqrt{x^2 + y^2}$ for all $(x, y) \in \mathbb{R}^2$. Show that f is not differentiable at (0, 0).
 - (c) Let $U = \{(x, y) \in \mathbb{R}^2 \mid (x, y) \neq (0, 0)\}$ and $f: U \to \mathbb{R}$ be given by

$$f(x,y) = \sqrt{x^2 + y^2}$$
, for all $(x,y) \in U$.

Show that f is differentiable on U.

Give Df(x, y) for all $(x, y) \in U$, and compute the gradient of f in U.