Exam 2

April 29, 2011
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 5 problems. Relax.

1. Assume that the temperature in a region, U, of three-dimensional space is given by a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
f(x, y, z)=c x^{2}(y-z), \quad \text { for all }(x, y, z) \in U
$$

and some positive constant c.
An insect flies in the region along a path modeled by a C^{1} function $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{3}$. Suppose that at time $t=1$ the insect is located at $(1,1,0)$ and its velocity is $\sigma^{\prime}(1)=\widehat{i}-\widehat{j}+2 \widehat{k}$. Compute the rate of change of temperature sensed by the insect at time $t=1$. Is the temperature increasing or decreasing at that instant?
2. Set up the integral (but, do not evaluate it) that yields the arc-length of the ellipse, C, given by the graph of the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

for positive real numbers a and b. Explain all the steps leading to your derivation of a formula for $\ell(C)$.
3. Let ω denote a differential 1-form in \mathbb{R}^{3}, and T the oriented triangle $\left[P_{o} P_{1} P_{2}\right]$ in \mathbb{R}^{3}
(a) State the Fundamental Theorem of Calculus for the differential form ω acting on the the boundary, ∂T, of the oriented triangle T.
(b) Apply the Fundamental Theorem of Calculus to evaluate the line integral

$$
\int_{\partial T} y d x+2 x d y+z^{2} d z,
$$

where the vertices of T are $P_{o}(1,0,0), P_{1}(0,1,0)$ and $P_{2}(0,0,1)$.
4. Let U denote an open subset in \mathbb{R}^{2} and $F: U \rightarrow \mathbb{R}^{2}$ be C^{1} vector field. Let C denote a simple closed curve in U.
(a) Write $F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}$, where P and Q denote C^{1} scalar fields defined in U. Define the flux of F across the simple, closed curve C and give a formula for computing it as line integral over C.
(b) Let R denote the parallelogram spanned by the vectors $\overrightarrow{O P_{1}}=\binom{1}{-1}$ and $\overrightarrow{O P_{2}}=\binom{2}{1}$, and let C denote the boundary, ∂R, of R oriented in the counterclockwise sense. Use the Fundamental Theorem of Calculus to evaluate the flux of the the field

$$
F(x, y)=2 x \widehat{i}+y \widehat{j}
$$

across C.
5. Evaluate the double integral $\iint_{R} x y d x d y$, where R is the region in the $x y$-plane sketched in Figure 1.

Figure 1: Sketch of Region R in Problem 5

