Exam 2

April 29, 2011

Name: _____

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 5 problems. Relax.

1. Assume that the temperature in a region, U, of three–dimensional space is given by a function $f : \mathbb{R}^3 \to \mathbb{R}$ defined by

$$f(x, y, z) = cx^2(y - z), \quad \text{for all } (x, y, z) \in U,$$

and some positive constant c.

An insect flies in the region along a path modeled by a C^1 function $\sigma \colon \mathbb{R} \to \mathbb{R}^3$. Suppose that at time t = 1 the insect is located at (1, 1, 0) and its velocity is $\sigma'(1) = \hat{i} - \hat{j} + 2\hat{k}$. Compute the rate of change of temperature sensed by the insect at time t = 1. Is the temperature increasing or decreasing at that instant?

2. Set up the integral (but, **do not evaluate it**) that yields the arc–length of the ellipse, C, given by the graph of the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

for positive real numbers a and b. Explain all the steps leading to your derivation of a formula for $\ell(C)$.

- 3. Let ω denote a differential 1-form in \mathbb{R}^3 , and T the oriented triangle $[P_o P_1 P_2]$ in \mathbb{R}^3
 - (a) State the Fundamental Theorem of Calculus for the differential form ω acting on the the boundary, ∂T , of the oriented triangle T.
 - (b) Apply the Fundamental Theorem of Calculus to evaluate the line integral

$$\int_{\partial T} y \, dx + 2x \, dy + z^2 \, dz,$$

where the vertices of T are $P_o(1, 0, 0)$, $P_1(0, 1, 0)$ and $P_2(0, 0, 1)$.

Math 107. Rumbos

- Spring 2011 2
- 4. Let U denote an open subset in \mathbb{R}^2 and $F: U \to \mathbb{R}^2$ be C^1 vector field. Let C denote a simple closed curve in U.
 - (a) Write $F(x, y) = P(x, y) \hat{i} + Q(x, y) \hat{j}$, where P and Q denote C^1 scalar fields defined in U. Define the flux of F across the simple, closed curve C and give a formula for computing it as line integral over C.
 - (b) Let R denote the parallelogram spanned by the vectors $\overrightarrow{OP_1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

and $\overrightarrow{OP_2} = \begin{pmatrix} 2\\ 1 \end{pmatrix}$, and let *C* denote the boundary, ∂R , of *R* oriented in the counterclockwise sense. Use the Fundamental Theorem of Calculus to evaluate the flux of the the field

$$F(x,y) = 2x \ \hat{i} + y \ \hat{j}$$

across C.

5. Evaluate the double integral $\iint_R xy \, dxdy$, where R is the region in the xy-plane sketched in Figure 1.

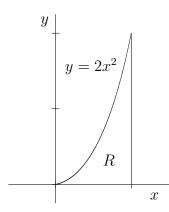


Figure 1: Sketch of Region R in Problem 5