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Review Problems for Final Exam

1. In this problem, x and y denote vectors in ℝn.

(a) Use the triangle inequality to derive the inequality

∣ ∥y∥ − ∥x∥ ∣ ⩽ ∥y − x∥ for all x, y ∈ ℝn.

(b) Use the inequality derived in the previous part to show that the function
f : ℝn → ℝ given by f(x) = ∥x∥, for all x ∈ ℝn, is continuous.

(c) Prove that the function g : ℝn → ℝ given by g(x) = sin(∥x∥), for allx ∈ ℝn,
is continuous.

2. Define the scalar field f : ℝn → ℝ by f(x) = ∥x∥2 for all x ∈ ℝn.

(a) Show that f is differentiable on ℝn and compute the linear map

Df(x) : ℝn → ℝ for all x ∈ ℝn.

What is the gradient of f at x for all x ∈ ℝn?

(b) Let û denote a unit vector in ℝn. For a fixed vector v in ℝn, define
g : ℝ→ ℝ by g(t) = ∥v − tû∥2, for all t ∈ ℝ. Show that g is differentiable
and compute g′(t) for all t ∈ ℝ.

(c) Let û be as in the previous part. For any v ∈ ℝn, give the point on the
line spanned by û which is the closest to v. Justify your answer.

3. Let I denote an open interval which contains the real number a. Assume that
� : I → ℝn is a C1 parametrization of a curve C in ℝn. Define s : I → ℝ as
follows:

s(t) = arlength along the curve C from �(a) to �(t),

for all t ∈ I.

(a) Give a formula, in terms of an integral, for computing s(t) for all t ∈ I.

(b) Prove that s is differentiable on I and compute s′(t) for all t ∈ I.

Deduce that s is strictly increasing with increasing t.
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4. Compute the arc length along the portion of the cycloid given by the parametric
equations

x = t− sin t and y = 1− cos t, for t ∈ ℝ,
from the point (0, 0) to the point (2�, 0).

5. Let Φ: ℝ2 → ℝ2 denote the map from the uv–plane to the xy–plane given by

Φ

(
u
v

)
=

(
2u
v2

)
for all

(
u
v

)
∈ ℝ2,

and let T be the oriented triangle [(0, 0), (1, 0), (1, 1)] in the uv–plane.

(a) Show that Φ is differentiable and give a formula for its derivative, DΦ(u, v),

at every point

(
u
v

)
in ℝ2.

(b) Give the image, R, of the triangle T under the map Φ, and sketch it in the
xy–plane.

(c) Evaluate the integral

∫∫
R

dxdy, where R is the region in the xy–plane

obtained in part (b).

(d) Evaluate the integral

∫∫
T

∣ det[DΦ(u, v)]∣ dudv, where det[DΦ(u, v)] de-

notes the determinant of the Jcobian matrix of Φ obtained in part (a).
Compare the result obtained here with that obtained in part (c).

6. Consider the iterated integral

∫ 1

0

∫ 1

x2

x
√

1− y2 dydx.

(a) Identify the region of integration, R, for this integral and sketch it.

(b) Change the order of integration in the iterated integral and evaluate the

double integral

∫
R

x
√

1− y2 dxdy.

7. What is the region R over which you integrate when evaluating the iterated
integral ∫ 2

1

∫ x

1

x√
x2 + y2

dy dx?

Rewrite this as an iterated integral first with respect to x, then with respect to
y. Evaluate this integral. Which order of integration is easier?
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8. Let f : ℝ→ ℝ denote a twice–differentiable real valued function and define

u(x, t) = f(x− ct) for all (x, t) ∈ ℝ2,

where c is a real constant.

Verify that
∂2u

∂t2
= c2

∂2u

∂x2
.

9. Let f : ℝ→ ℝ denote a twice–differentiable real valued function and define

u(x, y) = f(r) where r =
√
x2 + y2 for all (x, y) ∈ ℝ2.

(a) Define the vector field F (x, y) = ∇u(x, y). Express F in terms of f ′ and
r.

(b) Recall that the divergence of a vector field F = P î+Q ĵ is the scalar field

given by divF =
∂P

∂x
+
∂Q

∂y
. Express the divergence of the gradient of u,

in terms of f ′, f ′′ and r.

The expression div(∇u) is called the Laplacian of u, and is denoted by Δu
or ∇2u.

10. Let f(x, y) = 4x− 7y for all (x, y) ∈ ℝ2, and g(x, y) = 2x2 + y2.

(a) Sketch the graph of the set C = g−1(1) = {(x, y) ∈ ℝ2 ∣ g(x, y) = 1}.
(b) Show that at the points where f has an extremum on C, the gradient of

f is parallel to the gradient of g.

(c) Find largest and the smallest value of f on C.

11. Let ! be the differential 1–form in ℝ3 given by ! = x dx+ y dy + z dz.

(a) Compute the differential, d!, of !.

(b) If possible, find a differential 0–form, f , such that ! = df .

(c) Let C be parametrized by a C1 connecting Po(1,−1,−2) to P1(−1, 1, 2).

Compute the line integral

∫
C

!.

(d) Let C denote any simple closed curve in ℝ3. Evaluate the line integral∫
C

!.
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12. Let f denote a differential 0–form in ℝ3 and ! a a differential 1–form in ℝ3.

(a) Verify that d(df) = 0.

(b) Verify that d(d!) = 0.

13. Let f and g denote differential 0–forms in ℝ3, and ! and � a differential 1–forms
in ℝ3. Derive the following identities

(a) d(fg) = g df + f dg.

(b) d(f!) = df ∧ ! + f d!.

(c) d(! ∧ �) = d! ∧ � − ! ∧ d�.

14. Let R denote the square, R = {(x, y) ∈ ℝ2 ∣ 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1}, and ∂R
denote the boundary of R oriented in the counterclockwise sense. Evaluate the
line integral ∫

∂R

(y2 + x3) dx+ x4 dy.


