## Review Problems for Final Exam

1. In this problem, $x$ and $y$ denote vectors in $\mathbb{R}^{n}$.
(a) Use the triangle inequality to derive the inequality

$$
|\|y\|-\|x\|| \leqslant\|y-x\| \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

(b) Use the inequality derived in the previous part to show that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=\|x\|$, for all $x \in \mathbb{R}^{n}$, is continuous.
(c) Prove that the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g(x)=\sin (\|x\|)$, for all $x \in \mathbb{R}^{n}$, is continuous.
2. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$.
(a) Show that $f$ is differentiable on $\mathbb{R}^{n}$ and compute the linear map

$$
D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \text { for all } x \in \mathbb{R}^{n}
$$

What is the gradient of $f$ at $x$ for all $x \in \mathbb{R}^{n}$ ?
(b) Let $\widehat{u}$ denote a unit vector in $\mathbb{R}^{n}$. For a fixed vector $v$ in $\mathbb{R}^{n}$, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(t)=\|v-t \widehat{u}\|^{2}$, for all $t \in \mathbb{R}$. Show that $g$ is differentiable and compute $g^{\prime}(t)$ for all $t \in \mathbb{R}$.
(c) Let $\widehat{u}$ be as in the previous part. For any $v \in \mathbb{R}^{n}$, give the point on the line spanned by $\widehat{u}$ which is the closest to $v$. Justify your answer.
3. Let $I$ denote an open interval which contains the real number $a$. Assume that $\sigma: I \rightarrow \mathbb{R}^{n}$ is a $C^{1}$ parametrization of a curve $C$ in $\mathbb{R}^{n}$. Define $s: I \rightarrow \mathbb{R}$ as follows:

$$
s(t)=\text { arlength along the curve } C \text { from } \sigma(a) \text { to } \sigma(t)
$$

for all $t \in I$.
(a) Give a formula, in terms of an integral, for computing $s(t)$ for all $t \in I$.
(b) Prove that $s$ is differentiable on $I$ and compute $s^{\prime}(t)$ for all $t \in I$. Deduce that $s$ is strictly increasing with increasing $t$.
4. Compute the arc length along the portion of the cycloid given by the parametric equations

$$
x=t-\sin t \quad \text { and } \quad y=1-\cos t, \quad \text { for } t \in \mathbb{R}
$$

from the point $(0,0)$ to the point $(2 \pi, 0)$.
5. Let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the map from the $u v$-plane to the $x y$-plane given by

$$
\Phi\binom{u}{v}=\binom{2 u}{v^{2}} \quad \text { for all } \quad\binom{u}{v} \in \mathbb{R}^{2}
$$

and let $T$ be the oriented triangle $[(0,0),(1,0),(1,1)]$ in the $u v$-plane.
(a) Show that $\Phi$ is differentiable and give a formula for its derivative, $D \Phi(u, v)$, at every point $\binom{u}{v}$ in $\mathbb{R}^{2}$.
(b) Give the image, $R$, of the triangle $T$ under the map $\Phi$, and sketch it in the $x y$-plane.
(c) Evaluate the integral $\iint_{R} d x d y$, where $R$ is the region in the $x y$-plane obtained in part (b).
(d) Evaluate the integral $\iint_{T}|\operatorname{det}[D \Phi(u, v)]| d u d v$, where $\operatorname{det}[D \Phi(u, v)]$ denotes the determinant of the Jcobian matrix of $\Phi$ obtained in part (a). Compare the result obtained here with that obtained in part (c).
6. Consider the iterated integral $\int_{0}^{1} \int_{x^{2}}^{1} x \sqrt{1-y^{2}} d y d x$.
(a) Identify the region of integration, $R$, for this integral and sketch it.
(b) Change the order of integration in the iterated integral and evaluate the double integral $\int_{R} x \sqrt{1-y^{2}} d x d y$.
7. What is the region $R$ over which you integrate when evaluating the iterated integral

$$
\int_{1}^{2} \int_{1}^{x} \frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} y \mathrm{~d} x ?
$$

Rewrite this as an iterated integral first with respect to $x$, then with respect to $y$. Evaluate this integral. Which order of integration is easier?
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, t)=f(x-c t) \quad \text { for all } \quad(x, t) \in \mathbb{R}^{2}
$$

where $c$ is a real constant.
Verify that $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, y)=f(r) \quad \text { where } r=\sqrt{x^{2}+y^{2}} \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

(a) Define the vector field $F(x, y)=\nabla u(x, y)$. Express $F$ in terms of $f^{\prime}$ and $r$.
(b) Recall that the divergence of a vector field $F=P \widehat{i}+Q \widehat{j}$ is the scalar field given by $\operatorname{div} F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$. Express the divergence of the gradient of $u$, in terms of $f^{\prime}, f^{\prime \prime}$ and $r$.
The expression $\operatorname{div}(\nabla u)$ is called the Laplacian of $u$, and is denoted by $\Delta u$ or $\nabla^{2} u$.
10. Let $f(x, y)=4 x-7 y$ for all $(x, y) \in \mathbb{R}^{2}$, and $g(x, y)=2 x^{2}+y^{2}$.
(a) Sketch the graph of the set $C=g^{-1}(1)=\left\{(x, y) \in \mathbb{R}^{2} \mid g(x, y)=1\right\}$.
(b) Show that at the points where $f$ has an extremum on $C$, the gradient of $f$ is parallel to the gradient of $g$.
(c) Find largest and the smallest value of $f$ on $C$.
11. Let $\omega$ be the differential 1-form in $\mathbb{R}^{3}$ given by $\omega=x d x+y d y+z d z$.
(a) Compute the differential, $d \omega$, of $\omega$.
(b) If possible, find a differential 0-form, $f$, such that $\omega=d f$.
(c) Let $C$ be parametrized by a $C^{1}$ connecting $P_{o}(1,-1,-2)$ to $P_{1}(-1,1,2)$. Compute the line integral $\int_{C} \omega$.
(d) Let $C$ denote any simple closed curve in $\mathbb{R}^{3}$. Evaluate the line integral $\int_{C} \omega$.
12. Let $f$ denote a differential 0 -form in $\mathbb{R}^{3}$ and $\omega$ a a differential 1-form in $\mathbb{R}^{3}$.
(a) Verify that $d(d f)=0$.
(b) Verify that $d(d \omega)=0$.
13. Let $f$ and $g$ denote differential 0 -forms in $\mathbb{R}^{3}$, and $\omega$ and $\eta$ a differential 1-forms in $\mathbb{R}^{3}$. Derive the following identities
(a) $d(f g)=g d f+f d g$.
(b) $d(f \omega)=d f \wedge \omega+f d \omega$.
(c) $d(\omega \wedge \eta)=d \omega \wedge \eta-\omega \wedge d \eta$.
14. Let $R$ denote the square, $R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\right\}$, and $\partial R$ denote the boundary of $R$ oriented in the counterclockwise sense. Evaluate the line integral

$$
\int_{\partial R}\left(y^{2}+x^{3}\right) d x+x^{4} d y .
$$

