Assignment \#1

Due on Monday, January 31, 2011
Read Section 0.1 on Banach Spaces and Examples, pp. 1-3, in Hale's text.
Read Section 0.3 on Fixed Point Theorems, pp. 5-11, in Hale's text.
Read Section 1.1 on Existence, pp. 12-16, in Hale's text.
Read Chapter 1, Introduction, pp. 5-7, in the class lecture notes.
Read Chapter 2 on the Fundamental Existence Theory, pp. 9-19, in the class lecture notes.

Do the following problems

1. Let U denote an open subset of \mathbf{R}^{N}, and $F: U \rightarrow \mathbf{R}^{N}$ be a C^{1} vector field. The system

$$
\begin{equation*}
\frac{d x}{d t}=F(x) \tag{1}
\end{equation*}
$$

is said to be autonomous because the vector field, F, does not depend explicitly on the "time" variable, t.
Suppose that $u: J \rightarrow U$ is a C^{1} curve defined on an open interval, J, which solves the differential equation in (1); that is,

$$
u^{\prime}(t)=F(u(t)), \quad \text { for all } t \in J
$$

For a given real constant, c, define the interval J_{c} to be

$$
J_{c}=\{t \in \mathbf{R} \mid t+c \in J\} .
$$

Define a curve $v: J_{c} \rightarrow U$ by $v(t)=u(t+c)$ for all $t \in J_{c}$.
Verify that v is also a solution of (1); that is, show that v satisfies

$$
v^{\prime}(t)=F(v(t)), \quad \text { for all } t \in J_{c} .
$$

Suggestion: Apply the Chain Rule.
2. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
F(x)= \begin{cases}0 & \text { if } x \leqslant 0 \\ \sqrt{x} & \text { if } x>0\end{cases}
$$

(a) Verify that the function $u: \mathbf{R} \rightarrow \mathbf{R}$ given by

$$
u(t)= \begin{cases}0 & \text { if } t \leqslant 0 \\ \frac{t^{2}}{4} & \text { if } t>0\end{cases}
$$

solves the initial value problem (IVP)

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(x) ; \tag{2}\\
x(0)=0
\end{array}\right.
$$

(b) Give another solution to the IVP (2).
(c) Use the result of Problem 1 to come up with infinitely many solutions to the IVP (2).
3. Let U denote an open subset of \mathbf{R}^{N} which contains the zero vector, 0 , and J an open interval containing 0 . Assume that $F: U \rightarrow \mathbf{R}^{N}$ is a C^{1} vector field satisfying $F(0)=0$. Show that if $u: J \rightarrow U$ is a solution of the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(x) \\
x(0)=0
\end{array}\right.
$$

then u must be identically 0 on J.
Suggestion: Apply the local existence and uniqueness theorem for ordinary differential equations.
4. Let U denote an open subset of \mathbf{R}^{N} and $F: U \rightarrow \mathbf{R}^{N}$ be a C^{1} vector field. Let $p_{o} \in U$ and assume that $u: J \rightarrow U$ solves the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(x) \\
x\left(t_{o}\right)=p_{o}
\end{array}\right.
$$

where J is an open interval containing t_{o}. Show that u is a C^{2} function; that is, u has a a continuous second derivative, $u^{\prime \prime}$, defined on J.
Write down the second order differential equation that u satisfies and the corresponding initial value problem.
Suggestion: Apply the Chain Rule.
5. (Gromwall's Lemma) Let u and v denote continuous, real valued functions defined in the closed interval $[a, b]$. Assume that

$$
|u(t)| \leqslant C+\int_{a}^{t}|u(\tau)||v(\tau)| \mathrm{d} \tau, \quad \text { for all } t \in[a, b]
$$

(a) Prove that

$$
\begin{equation*}
|u(t)| \leqslant C e^{V(t)}, \quad \text { for all } t \in[a, b], \tag{3}
\end{equation*}
$$

where

$$
V(t)=\int_{a}^{t}|v(\tau)| \mathrm{d} \tau, \quad \text { for all } t \in[a, b] .
$$

The inequality in (3) is usually referred to as Gronwall's inequality.
(b) Apply the result in (3) of the previous part to the situation in which $v(t)=K$, for all $t \in[a, b]$, where K is a positive constant.

Suggestion: Define the real value function, $g:[a, b] \rightarrow \mathbf{R}$,

$$
g(t)=C+\int_{a}^{t}|u(\tau)||v(\tau)| \mathrm{d} \tau, \quad \text { for all } t \in[a, b] .
$$

Then, use the Fundamental Theorem of Calculus to show that g is differentiable on (a, b), and to derive a differential inequality satisfied by g.

