Assignment \#2

Due on Wednesday, February 9, 2011
Read Section I. 2 on Continuation of Solutions, pp. 16-18, in Hale's text.
Read Section I. 3 on Uniqueness and Continuity Properties, pp. 18-25, in Hale's text.
Read Section 2.3 on Extension of Solutions, pp. 16-26, in the class lecture notes.
Do the following problems

1. Let U denote an open subset of \mathbf{R}^{N}, and $F: U \rightarrow \mathbf{R}^{N}$ be a C^{1} vector field. For given $p \in U$, let $u_{p}: J_{p} \rightarrow U$ denote the unique solution to the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(x) \\
x(0)=p
\end{array}\right.
$$

defined on a maximal interval of existence, J_{p}. For $s \in J_{p}$, put $q=u_{p}(s)$ and define

$$
v(t)=u_{p}(t+s), \quad \text { for all } t \in J_{p}-s
$$

where $J_{p}-s=\left\{t \in \mathbf{R} \mid t+s \in J_{p}\right\}$. Prove that v is the solution to the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(x) \\
x(0)=q
\end{array}\right.
$$

That is,

$$
u_{p}(t+s)=u_{q}(t), \quad \text { for all } t \in J_{p}-s
$$

where $q=u_{p}(s)$.
2. Find the maximal interval of existence, $J=(a, b)$, for the two-dimensional system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =x^{2} \\
\frac{d y}{d t} & =y+\frac{1}{x}
\end{aligned}\right.
$$

subject to the initial condition

$$
\left\{\begin{array}{l}
x(0)=1 \\
y(0)=1
\end{array}\right.
$$

Compute the corresponding unique solution $u: J \rightarrow \mathbf{R}^{2}$. If either $a>-\infty$ or $b<\infty$, discuss the limit of $u(t)$ as $t \rightarrow a^{+}$, or $t \rightarrow b^{-}$, respectively.
3. Let I be an open interval and U an open subset of \mathbf{R}^{N}. Suppose that $F: I \times U \rightarrow$ \mathbf{R}^{N} is a continuous vector field which is bounded over $I \times U$. Let a and b be real numbers with $a<b$ and $[a, b] \subset I$, and suppose that

$$
u:(a, b) \rightarrow U
$$

is a solution to the equation $\frac{d x}{d t}=F(t, x)$. Prove that $\lim _{t \rightarrow a^{+}} u(t)$ and $\lim _{t \rightarrow b^{-}} u(t)$ exist.

Suggestion: Follow the following outline:
i. Let M be a positive number such that

$$
\|F(t, x)\| \leqslant M, \quad \text { for all }(t, x) \in I \times U,
$$

and derive the estimate

$$
\begin{equation*}
\|u(t)-u(s)\| \leqslant M|t-s|, \quad \text { for all } t, s \in(a, b) . \tag{1}
\end{equation*}
$$

ii. Let $\left(t_{m}\right)$ be any sequence in (a, b) which converges to b. Use the estimate in (1) to show that $\left(u\left(t_{m}\right)\right.$ is a Cauchy sequence in \mathbf{R}^{N}. Therefore, the sequence of vectors, $\left(u\left(t_{m}\right)\right)$, converges in \mathbf{R}^{N} to some vector p.
iii. Let $\left(t_{m}\right)$ and p be as in Part 3ii. Prove that

$$
\begin{equation*}
\lim _{t \rightarrow b^{-}} u(t)=p \tag{2}
\end{equation*}
$$

(Argue by contradiction. If (2) is not true, there is a positive number, ε, and sequence $\left(s_{m}\right)$ in (a, b) such that $s_{m} \rightarrow b$ and

$$
\left\|u\left(s_{m}\right)-p\right\| \geqslant \varepsilon .
$$

Then, use (1) to estimate $\left\|u\left(t_{m}\right)-u\left(s_{m}\right)\right\|$.)
4. Let F, a, b and u be as in Problem 3, and suppose that $F(t, x)$ satisfies a local Lipschitz condition at every $(t, p) \in I \times U$. Prove that if $\lim _{t \rightarrow b^{-}} u(t) \in U$, then u can be extended to an interval $(a, b+\delta)$, for some $\delta>0$.
State the analogous result at the endpoint a.
Suggestion: Let $p=\lim _{t \rightarrow b^{-}} u(t)$ and consider the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(t, x) ; \\
x(b)=p
\end{array}\right.
$$

5. The swings of simple (undamped) pendulum are governed by the following second order ordinary differential equation (ODE):

$$
\begin{equation*}
m \ell \frac{d^{2} \theta}{d t^{2}}=-m g \sin \theta \tag{3}
\end{equation*}
$$

where $\theta=\theta(t)$ is a twice differentiable function which gives the angle the pendulum makes with a vertical line, m is the mass of the pendulum bob and ℓ is the length of the pendulum.
Introducing the new variables $x=\theta$ and $y=\frac{d \theta}{d t}$, the second order ODE in (3) can be turned into a two-dimensional system of first order equations of the form

$$
\left\{\begin{align*}
\frac{d x}{d t} & =f(x, y) \tag{4}\\
\frac{d y}{d t} & =g(x, y)
\end{align*}\right.
$$

for some real valued, C^{1} functions, f and g.
(a) Give the functions f and g in the system in (4), and their respective domains in \mathbf{R}^{2}.
(b) Prove that solutions of (4) subject to the initial conditions

$$
\left\{\begin{array}{l}
x(0)=x_{o} \\
y(0)=y_{o}
\end{array}\right.
$$

exist for all $t \in \mathbf{R}$ and any $\left(x_{o}, y_{o}\right) \in \mathbf{R}^{2}$.
Suggestion: Apply an appropriate global existence result proved in Section 2.3 of the Class Lecture Notes.

