Assignment \#3

Due on Wednesday, February 16, 2011
Read Section I. 4 on Continuous Dependence and Stability, pp. 25-27, in Hale's text.
Read Section 2.4 on Continuous Dependence on Initial Conditions, pp. 27-32, in the class lecture notes.

Do the following problems

1. Consider the one-dimensional system

$$
\begin{equation*}
\frac{d x}{d t}=F(x) \tag{1}
\end{equation*}
$$

where $F:(0, \infty) \rightarrow \mathbf{R}$ is given by

$$
\begin{equation*}
F(x)=\frac{1}{2 x}, \quad \text { for all } x>0 \tag{2}
\end{equation*}
$$

(a) For $p>0$, find the solution, $u_{p}: J_{p} \rightarrow \mathbf{R}$, to the equation in (1) subject to the initial condition

$$
\begin{equation*}
x(0)=p \tag{3}
\end{equation*}
$$

(b) Give the maximal interval of existence, J_{p}, for the solution, u_{p}, computed in Part (a) of this problem. Write $J_{p}=(a, b)$. Compute

$$
\lim _{t \rightarrow a^{+}} u_{p}(t)
$$

and discuss your result in light of the Escape in Finite Time Theorem (Proposition 2.3.9) in the class lecture notes.
2. Let F be as in Problem 1. Denote by $\theta(t, p)$ the solution $u_{p}(t)$, for $t \in J_{p}$, to the IVP in (1) and (3).
(a) Give the domain of definition of θ and verify that θ is continuous on its domain.
(b) Verify that θ is also C^{1} in its domain and compute the partial derivatives

$$
\frac{\partial \theta}{\partial t}(t, p) \quad \text { and } \quad \frac{\partial \theta}{\partial p}(t, p) .
$$

3. Let $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote the vector field defined by

$$
F\binom{x}{y}=\binom{-x}{2 y+x^{2}}, \quad \text { for all } x, y \in \mathbf{R} .
$$

For every $p, q \in \mathbf{R}$, solve the IVP

$$
\left\{\begin{array}{l}
\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=F\binom{x}{y} ; \tag{4}\\
\binom{x(0)}{y(0)}=\binom{p}{q}
\end{array}\right.
$$

Denote the solution to IVP (4) by $u_{(p, q)}(t)$, for t in a maximal interval of existence $J_{(p, q)}$.
(a) Give the maximal interval of existence $J_{(p, q)}$ for each $(p, q) \in \mathbf{R}^{2}$.
(b) Put $\theta(t, p, q)=u_{(p, q)}(t)$ for each $(p, q) \in \mathbf{R}^{2}$ and each $t \in J_{(p, q)}$. Give the domain of definition of the map θ and verify that θ is continuous in that domain.
4. Let F be as given in Problem 3 and let $\theta=\theta(t, p, q)$ denote the flow map for the field F, which was computed in part (b) of that problem. Verify that θ is a C^{1} map and compute the derivative map,

$$
D_{(p, q)} \theta(t, p, q): U \rightarrow \mathbf{R}^{2}
$$

with respect to the initial points (p, q), for each $(p, q) \in \mathbf{R}^{2}$ and $t \in J_{(p, q)}$; more specifically, write

$$
\theta(t, p, q)=\binom{f(t, p, q)}{g(t, p, q)}
$$

where f and g are real valued functions, and compute

$$
D_{(p, q)} \theta(t, p, q)=\left(\begin{array}{ll}
\frac{\partial f}{\partial p}(t, p, q) & \frac{\partial f}{\partial q}(t, p, q) \\
\frac{\partial g}{\partial p}(t, p, q) & \frac{\partial g}{\partial q}(t, p, q)
\end{array}\right)
$$

5. Let I denote an open interval and U an open subset of \mathbf{R}^{N}. Suppose that $F: I \times U \rightarrow \mathbf{R}^{N}$ is continuous Assume also that $F(t, x)$ satisfies a Lipschitz condition in x over a set $J \times V$, where J is an open subinterval of I, and V is an open subset of U; more specifically, assume that there exists a constant K such that

$$
\begin{equation*}
\|F(t, x)-F(t, y)\| \leqslant K\|x-y\|, \quad \text { for } x, y \in V, \text { and } t \in J . \tag{5}
\end{equation*}
$$

(a) Explain why, for any $\left(t_{o}, p_{o}\right) \in J \times V$, the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(t, x) ; \tag{6}\\
x\left(t_{o}\right)=p_{o}
\end{array}\right.
$$

has a unique solution, $u_{p_{o}}: J_{p_{o}} \rightarrow U$, defined on some maximal interval $J_{p_{o}}$ containing t_{o}.
(b) Let $u_{p}: J_{p} \rightarrow U$ and $u_{q}: J_{p} \rightarrow U$ denote solutions of the differential equation

$$
\frac{d x}{d t}=F(t, x)
$$

satisfying the

$$
u_{p}\left(t_{o}\right)=p \quad \text { and } \quad u_{q}\left(t_{o}\right)=q
$$

where $t_{o} \in J$ and $p, q \in V$.
Assume that

$$
u_{p}(t) \in V \quad \text { and } \quad u_{q}(t) \in V, \quad \text { for all } t \in J .
$$

Prove that

$$
\left\|u_{p}(t)-u_{q}(t)\right\| \leqslant\|p-q\| e^{K\left|t-t_{o}\right|}, \quad \text { for all } t \in J
$$

