Assignment \#4

Due on Wednesday, February 23, 2011
Read Section I. 7 on Autonomous Systems-Generalities, pp. 37-46, in Hale's text.
Read Section I. 8 on Autonomous Systems-Limit Sets, Invariant Sets, pp. 46-49, in Hale's text.
Read Chapter 3 on Flows, pp. 33-40, in the class lecture notes.

Background and Definitions

Let U denote an open subset of \mathbf{R}^{N} and $F: U \rightarrow \mathbf{R}^{N}$ be a C^{1} vector filed. Define $\mathcal{D} \subset \mathbf{R} \times U$ by

$$
\mathcal{D}=\left\{(t, p) \in \mathbf{R} \times U \mid t \in J_{p}\right\}
$$

where J_{p} denotes the maximal interval of existence for the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(x) \tag{1}\\
x(0)=p
\end{array}\right.
$$

- (Flow Maps) The flow map $\theta: \mathcal{D} \rightarrow U$ of the vector field F is defined to be

$$
\theta(t, p)=u_{p}(t), \quad \text { for all }(t, p) \in \mathcal{D}
$$

where $u_{p}: J_{p} \rightarrow U$ is the solution to IVP (1)

- (Orbits) Given $p \in U$, the path or orbit of the flow, θ, through p is the set, γ_{p}, defined by

$$
\gamma_{p}=\left\{x \in U \mid x=\theta(t, p) \text { for some } t \in J_{p}\right\} ;
$$

in other words, γ_{p} is the image of the solution, $u_{p}: J_{p} \rightarrow U$, to the IVP (1). Thus, γ_{p} is a C^{1} curve in U parametrized by $u_{p}: J_{p} \rightarrow U$. This is what we have been calling the integral curve of F through p. Some texts refer to γ_{p} as a trajectory through p.

- Assume that $\theta(t, p)$ is defined for all $t \in \mathbf{R}$ and all $p \in U$. For each $t \in \mathbf{R}$ define $\theta_{t}: U \rightarrow U$ by $\theta_{t}(p)=\theta(t, p)$, for all $p \in U$.
- (Invariant Sets) A subset A of U is said to be invariant under the flow θ if for every $p \in A, \theta(t, p) \in A$ for all $t \in J_{p}$.
- (Fixed Points or Singular Points) A point p in U is said to be a fixed point of the flow θ if $\theta(t, p)=p$ for all $t \in J_{p}$. Fixed points are also referred to as singular points, or equilibrium points.

Do the following problems

1. Let $\theta(t, p)$ denote the flow map of the C^{1} vector field $F: U \rightarrow \mathbf{R}$. Assume that $\theta(t, p)$ is defined for all $t \in \mathbf{R}$ and all $p \in U$. Prove that:
(a) θ_{0} is the identity map on U; that is, $\theta(0, p)=p$ for all $p \in U$.
(b) For any t and s in $\mathbf{R}, \theta_{t+s}=\theta_{t} \circ \theta_{s}$.
(c) Deduce from (a) and (b) above that θ_{t} is invertible for any $t \in \mathbf{R}$.
2. Let γ_{p} denote the orbit through p in U of the flow θ. Prove that

$$
q \in \gamma_{p} \Rightarrow \gamma_{p}=\gamma_{q} .
$$

Give an interpretation of this result.
3. Let γ_{p} and γ_{q} denote the orbits through p and q in U, respectively, of the flow θ. Prove that

$$
\gamma_{p} \cap \gamma_{q} \neq \emptyset \Rightarrow \gamma_{p}=\gamma_{q}
$$

Deduce therefore that distinct orbits do not intersect.
Suggestion: Let $p_{o} \in \gamma_{p} \cap \gamma_{q}$; then, there exist $t_{1} \in J_{p}$ and $t_{2} \in J_{q}$ such that

$$
u_{p}\left(t_{1}\right)=u_{q}\left(t_{2}\right)=p_{o} .
$$

4. Let γ_{p} denote the orbit through p in U of the flow θ. Prove that γ_{p} is invariant under the flow.
5. Let $p^{*} \in U$ denote a fixed point of the flow θ. Prove that
(a) $F\left(p^{*}\right)=0$, the zero-vector in \mathbf{R}^{N}. The point p^{*} is also referred to as an equilibrium point of the differential equation

$$
\begin{equation*}
\frac{d x}{d t}=F(x) . \tag{2}
\end{equation*}
$$

(b) Let $p^{*} \in U$ and suppose that $F\left(p^{*}\right)=0$. Compute $\gamma_{p^{*}}$.
(c) Let A denote the set of equilibrium points of the equation (2). Prove that A is invariant under the flow θ.

