Assignment \#9

Due on Monday, April 25, 2011
Read Section II. 1 on Two-Dimensional Systems, pp. 51-63, in Hale's text.
Read Chapter X on The Direct Method of Liapunov, pp. 311-319, in Hale's text.
Read Chapter 4 on Continuous Dynamical Systems, starting on page 47, in the class lecture notes.

Background and Definitions

- In the problems in this problem set, a dot on top of a variable will denote the derivative with respect to t of that variable; for instance $\dot{x}=\frac{d x}{d t}$.
- If V is a real valued C^{1} function defined on an open region U in \mid Rtwo, we define $\dot{V}(x, y)$ to by

$$
\dot{V}(x, y)=\frac{d}{d t}\left(V\left(\varphi_{t}(x, y)\right)=\frac{\partial V}{\partial x} \dot{x}+\frac{\partial V}{\partial y} \dot{y}=\frac{\partial V}{\partial x} f(x, y)+\frac{\partial V}{\partial y} g(x, y)\right.
$$

That is, $\dot{V}(x, y)$ is the rate of change of V along the orbit of system of the 2-dimensional system

$$
\left\{\begin{array}{l}
\dot{x}=f(x, y) \tag{1}\\
\dot{y}=g(x, y)
\end{array}\right.
$$

going through (x, y).

1. Let A and Q be 2×2 matrices, and assume that Q is invertible. Suppose that $(x(t), y(t))$ is a solution to the system $\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}$. Show that by making the change of variables $\binom{u}{v}=Q^{-1}\binom{x}{y}$, we obtain a solution to the system

$$
\binom{\dot{u}}{\dot{v}}=Q^{-1} A Q\binom{u}{v} .
$$

2. Consider the linear system $\begin{cases}\dot{x} & =-y \\ \dot{y} & =2 x+3 y\end{cases}$
(a) Write the system in the matrix form $\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}$.
(b) Let $Q=\left(\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right)$, and set $Q^{-1} A Q=J$. Give the general solution of the system $\binom{\dot{u}}{\dot{v}}=J\binom{u}{v}$, and sketch the phase portrait in the $u v$-plane.
(c) Give the general solution of the system $\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}$. and sketch the phase portrait.
(d) Determine the nature of the stability of the equilibrium point $(0,0)$.
3. Let $\binom{x(t)}{y(t)}$ denote a solution of the two-dimensional linear system $\binom{\dot{x}}{\dot{y}}=$ $A\binom{x}{y}$, and suppose that $\lim _{t \rightarrow \infty} \sqrt{(x(t))^{2}+(y(t))^{2}}=0$. Use the continuity of the linear transformation $\binom{u}{v}=Q^{-1}\binom{x}{y}$, where Q is an invertible 2×2 matrix, to show that the solution $\binom{u(t)}{v(t)}=Q^{-1}\binom{x(t)}{y(t)}$ of the system

$$
\binom{\dot{u}}{\dot{v}}=J\binom{u}{v}, \quad \text { where } \quad J=Q^{-1} A Q
$$

also satisfies the property $\lim _{t \rightarrow \infty} \sqrt{(u(t))^{2}+(v(t))^{2}}=0$.
Hence, prove that if $\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}$ has an asymptotically stable equilibrium point, $(0,0)$, then so does the system $\binom{\dot{u}}{\dot{v}}=J\binom{u}{v}$, and vice versa.
4. Assume that the functions f and g in the system (1) are C^{1} functions defined on all of \mathbb{R}^{2}. Let $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ denote a C^{1} function satisfying

$$
V(x, y) \rightarrow \infty \quad \text { as } \quad\|(x, y)\| \rightarrow \infty
$$

and $\dot{V}(x, y) \leq 0$ for all $(x, y) \in \mathbb{R}^{2}$.
(a) Show that the set $\{\theta(t, x, y) \mid t \geqslant 0\}$ is bounded for any $(x, y) \in \mathbb{R}^{2}$.
(b) Show that $\dot{V}(\bar{x}, \bar{y})=0$ for all $(\bar{x}, \bar{y}) \in \omega\left(\gamma_{(p, q)}\right)$ and any $(p, q) \in \mathbb{R}^{2}$.
5. Let $V(x, y)=a x^{2}+2 b x y+c y^{2}$, where a, b and c are real numbers. Show that if $a>0$ and $a c-b^{2}>0$, then V is positive definite in \mathbb{R}^{2}.

