Assignment \#10

Due on Monday, February 27, 2012
Read Section 4.1 on The Expectation of a Random Variable in DeGroot and Schervish.
Do the following problems

1. An experiment consists of tossing a balanced die until a 6 comes up. On average, how many tosses are required to get a 6 ? In other words, if X denotes the number of tosses it takes to get a 6 , what is $E(X)$? Show your calculations and justify your reasoning.
2. Two discrete random variable, X and Y, are said to be independent if

$$
\operatorname{Pr}(X=x, Y=y)=\operatorname{Pr}(X=x) \cdot \operatorname{Pr}(Y=y)
$$

for all possible values of x and y or X and Y, respectively.
Prove that if X and Y are discrete and independent, then

$$
E(X+Y)=E(X)+E(Y)
$$

3. Let X be a discrete random variable with $\operatorname{pmf} p_{X}(x)$, and assume that $p_{X}(x)$ is positive at $x=-1,0,1$ and zero elsewhere.
(a) If $p_{X}(0)=\frac{1}{4}$, find $E\left(X^{2}\right)$.
(b) If $p_{X}(0)=\frac{1}{4}$ and if $E(X)=\frac{1}{4}$, determine $p_{X}(-1)$ and $p_{X}(1)$.
4. A bowl contains 10 chips, of which eight are marked $\$ 2$ and two are marked $\$ 5$ each. Let a person choose, at random and without replacement, three chips from the bowl. If the person is to receive the sum of the resulting amounts, find this expectation.
5. Let $p_{X}(k)=\left(\frac{1}{2}\right)^{k}$, for $k=1,2,3, \ldots$, zero elsewhere, be the pmf of a discrete random variable X. Find the mean value of X.
Hint: For $|t|<1$, define the function $f(t)=\sum_{k=0}^{\infty} t^{k}$. This is a geometric series which adds up to $\frac{1}{1-t}$. Compute $f^{\prime}(t)$.
