Assignment \#12

Due on Friday, March 2, 2012
Read Section 4.1 on The Expectation of a Random Variable in DeGroot and Schervish.
Read Section 4.2 on Properties of Expectations in DeGroot and Schervish.
Do the following problems

1. A balanced die is tossed n times. Let X denote the number of 1 's that come up. Give the pmf for X and compute its expectation.
2. Let X and Y denote independent $\operatorname{Binomial}(n, p)$ random variables and put $Z=X+Y$. Determine the pmf of Z and compute its expectation.
Hint: Suppose there are n red balls and n blue balls in a box. Compute the number of ways of picking k balls out of the box, l of which are red and $k-l$ of which are blue.
3. (Random Walk on the Integers). A particle starts at $x=0$ and, after one unit of time, it moves one unit to the right with probability p, for $0<p<1$, or to the left with probability $1-p$. Let X_{1} denote the position of the particle after one unit of time and X_{2} denote that after 2 units of time. Give the probability mass functions for X_{1} and X_{2} and compute their expectations. Assume that at each time step, whether a particle will move to the right or to the left is independent of where it has been.
4. (Random Walk on the Integers, Continued). Let X_{3} denote the position of the particle in the previous problem after 3 units of time. Give its pmf and expectation. Generalize this result to X_{n}, the position of the particle after n units of time.
5. Toss a coin 100 times, and let X denote the number of heads that come up. Given that the probability of a head is p, where $0<p<1$, give the distribution function of X and compute $\operatorname{Pr}(35 \leqslant X \leqslant 45)$ for the cases $p=0.5$ and $p=0.4$.
