Assignment \#15

Due on Friday, March 23, 2012
Read Section 3.4 on Bivariate Distributions in DeGroot and Schervish.
Read Section 3.5 on Marginal Distributions in DeGroot and Schervish.
Do the following problems

1. Let $F_{(X, Y)}$ be the joint cdf of two random variables X and Y. For real constants $a<b, c<d$, show that

$$
\operatorname{Pr}(a<X \leqslant b, c<Y \leqslant d)=F_{(X, Y)}(b, d)-F_{(X, Y)}(b, c)-F_{(X, Y)}(a, d)+F_{(X, Y)}(a, c)
$$

Use this result to show that $F(x, y)=\left\{\begin{array}{ll}1 & \text { if } x+2 y \geqslant 1, \\ 0 & \text { otherwise },\end{array}\right.$ cannot be the joint cdf of two random variables.
2. Let $g(t)$ denote a non-negative, integrable function of a single variable with the property that $\int_{0}^{\infty} g(t) \mathrm{d} t=1$. Define

$$
f(x, y)= \begin{cases}\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} & \text { for } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Show that $f(x, y)$ is a joint pdf for two random variables X and Y.
3. Let X and Y have joint pdf $f_{(X, Y)}(x, y)= \begin{cases}e^{-x-y} & \text { for } 0<x<\infty, 0<y<\infty, \\ 0 & \text { otherwise } .\end{cases}$ Define $Z=X+Y$. Compute $\operatorname{Pr}(Z \leqslant z)$ for $0<z<\infty$ and give the pdf of Z.
4. Let X and Y have joint pdf $f_{(X, Y)}(x, y)=\left\{\begin{array}{ll}1 & \text { for } 0<x<1,0<y<1, \\ 0 & \text { otherwise } .\end{array}\right.$ Find the cdf and pdf of the product $Z=X Y$.
5. Suppose that two persons make an appointment to meet between 5 PM and 6 PM at a certain location and they agree that neither person will wait more than 10 minutes for each person. If they arrive independently at random times between 5 PM and 6 PM , what is the probability that they will meet?

