Assignment #8

Due on Monday, February 13, 2012

Read Section 3.2 on Continuous Distributions in DeGroot and Schervish.

Do the following problems

1. Suppose the pdf of a random variable X is as follows:

$$f(x) = \begin{cases} \frac{4}{3}(1 - x^3) & \text{for } 0 < x < 1, \\\\ 0 & \text{otherwise.} \end{cases}$$

Sketch the pdf and determine the values of the following probabilities:

- (a) $\Pr\left(X < \frac{1}{2}\right)$ (b) $\Pr\left(\frac{1}{4} < X < \frac{3}{4}\right)$ (c) $\Pr\left(X > \frac{1}{3}\right)$
- 2. Suppose the pdf of a random variable is as follows:

$$f(x) = \begin{cases} cx^2 & \text{for } 1 \leq x \leq 2, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the value of c and sketch the pdf.
- (b) Find the value of Pr(X > 3/2).
- 3. Let $C = \{x \in \mathbb{R} \mid 0 < x < \infty\}$ and \mathcal{B} denote the Borel sets in C. Let the pdf of a random variable, X, defined on C be given by

$$f_x(x) = e^{-x} \text{ for all } x > 0.$$

Let $E_k = \{x \in \mathcal{C} \mid 2 - 1/k < x \leq 3\}$ for $k = 1, 2, 3, ...$
Compute $\Pr(E_n)$ for all n , and $\lim_{n \to \infty} \Pr(E_n)$.

Spring 2012 2

Math 151. Rumbos

4. A point is selected at random form the sample space $C = \{x \in \mathbb{R} \mid 0 < x < 10\}$. For any Borel subset $E \subseteq C$ the probability of E is defined to be

$$\Pr(E) = \int_E \frac{1}{10} \, \mathrm{d}x.$$

Define $X \colon \mathcal{C} \to \mathbb{R}$ to be

$$X(x) = x^2$$
 for all $x \in \mathcal{C}$.

Find the cumulative distribution function and the probability density function of X.

5. A *median* of the distribution of a random variable X is a value m for x such that

$$\Pr(X < m) \leq \frac{1}{2}$$
 and $\Pr(X \leq m) \geq \frac{1}{2}$.

If there is only one such value m, it is called the median of the distribution. Suppose the pdf of a random variable X is given by the function

$$f(x) = \begin{cases} \frac{1}{8}x & \text{for } 0 \leq x \leq 4, \\ 0 & \text{otherwise.} \end{cases}$$

Compute a median for the distribution of X. Is it the median of the distribution?