Exam 1

Friday, February 17, 2012
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 questions. Relax.

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space.
(a) Given events A and B in \mathcal{B} with $\operatorname{Pr}(B)>0$. Give the definition of the conditional probability of A given B; i.e., $\operatorname{Pr}(A \mid B)$.
(b) Define what it means for $A, B \in \mathcal{B}$ to be stochastically independent.
(c) Define what it means for $A, B \in \mathcal{B}$ to be mutually exclusive.
(d) Given that A and B are independent events in \mathcal{B} with $\operatorname{Pr}(A)=\frac{1}{4}$ and $\operatorname{Pr}(B)=\frac{3}{4}$, compute $\operatorname{Pr}(A \cup B)$.
2. A bowl contains 4 chips of the same size and shape. One and only one of these chips is red.
(a) In an experiment, chips are drawn at random from the bowl, one at a time and without replacement, until the red chip is drawn. Let X denote the number of draws needed to get the red chip. Give the pmf, p_{x}, of X.
(b) In another experiment, chips are drawn at random from the bowl one at a time, but this time with replacement, until the red chip is drawn. Let Y denote the number of draws needed to get the red chip. Compute p_{Y}.
3. Let $X \sim \operatorname{Uniform}(0,1)$.
(a) Give the pdf, f_{X}, for X.
(b) Define $Y=\frac{1}{X}$. Compute the cdf, F_{Y}, for Y in terms of the cdf for X.
(c) Compute the pdf, f_{Y}, for Y.
(d) Compute the probability that Y is at least 2 given that Y is at most 4.
