Review Problems for Exam 2

- (1) Let X and Y be independent Normal(0, 1) random variables. Put $Z = \frac{Y}{X}$. Compute the distribution functions $F_z(z)$ and $f_z(z)$.
- (2) A random point (X, Y) is distributed uniformly on the square with vertices (-1, -1), (1, -1), (1, 1) and (-1, 1).
 - (a) Give the joint pdf for X and Y.
 - (b) Compute the following probabilities: (i) $P(X^2 + Y^2 < 1)$, (ii) P(2X Y > 0), (iii) P(|X + Y| < 2).
- (3) Prove that if the joint cdf of X and Y satisfies

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

then for any pair of intervals (a, b) and (c, d),

$$P(a < X \le b, c < Y \le d) = P(a < X \le b)P(c < Y \le d).$$

(4) The random pair (X, Y) has the joint distribution

$X \setminus Y$	2	3	4
1	$\frac{1}{12}$	$\frac{1}{6}$	0
2	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

- (a) Show that X and Y are not independent.
- (b) Give a probability table for random variables U and V that have the same marginal distributions as X and Y, respectively, but are independent.
- (5) Let X denote the number of trials needed to obtain the first head, and let Y be the number of trials needed to get two heads in repeated tosses of a fair coin. Are A and Y independent random variables?
- (6) Let $X \sim \text{Normal}(0, 1)$ and put $Y = X^2$. Find the pdf for Y.
- (7) Let X and Y be independent Normal(0, 1) random variables. Compute $P(X^2 + Y^2 < 1)$.
- (8) Suppose that X and Y are independent random variables such that $X \sim \text{Uniform}(0,1)$ and $Y \sim \text{Exponential}(1)$.
 - (a) Let Z = X + Y. Find F_z and f_z .
 - (b) Let U = Y/X. Find F_U and f_U .
- (9) Let $X \sim \text{Exponential}(1)$, and define Y to be the integer part of X + 1; that is, Y = i + 1 if and only if $i \leq X < i + 1$, for i = 0, 1, 2, ... Find the pmf of Y, and deduce that $Y \sim \text{Geometric}(p)$ for some 0 . What is the value of <math>p?
- (10) The expected number of typographical errors on a page of a certain magazine is 0.20. What is the probability that an article of 10 pages contains (a) no typographical errors, and (b) two or more typographical errors. Explain your reasoning.