Solutions to Review Problems for Exam 2

1. Let X and Y be independent $\operatorname{Normal}(0,1)$ random variables. Put $Z=\frac{Y}{X}$. Compute the distribution functions $F_{z}(z)$ and $f_{Z}(z)$.
Solution: Since $X, Y \sim \operatorname{Normal}(0,1)$, their pdfs are given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { for } x \in \mathbb{R}
$$

and

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}, \quad \text { for } y \in \mathbb{R}
$$

respectively. The joint pdf of (X, Y) is then

$$
\begin{equation*}
f_{(X, Y)}(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

We compute the cdf of Z,

$$
F_{z}(z)=\operatorname{Pr}(Z \leqslant z)=\operatorname{Pr}\left(\frac{y}{x} \leqslant z\right)
$$

or

$$
\begin{equation*}
F_{Z}(z)=\iint_{\frac{y}{x} \leqslant z} f_{(X, Y)}(x, y) d x d y \tag{2}
\end{equation*}
$$

where the integrand in (2) is given in (1) and the integration is done over the region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{y}{x} \leqslant z\right.\right\}
$$

Make the change variables

$$
\begin{aligned}
& u=x \\
& v=\frac{y}{x}
\end{aligned}
$$

so that

$$
\begin{align*}
x & =u \\
y & =u v \tag{3}
\end{align*}
$$

in the integral in (2) to obtain

$$
\begin{equation*}
F_{Z}(z)=\int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{(X, Y)}(u, u v)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{4}
\end{equation*}
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}
1 & 0 \tag{5}\\
v & u
\end{array}\right)=u
$$

is the Jacobian determinant of the transformation in (3). It then follows from (4) and (5) that

$$
\begin{equation*}
F_{Z}(z)=\int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{(X, Y)}(u, u v)|u| d u d v \tag{6}
\end{equation*}
$$

Differentiating with respect to z and using the definition of the joint pdf of (X, Y) in (1) we obtain from (6) that

$$
\begin{equation*}
f_{Z}(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|u| e^{-\left(1+z^{2}\right) u^{2} / 2} d u \tag{7}
\end{equation*}
$$

where we have also used the Fundamental Theorem of Calculus.
Since the integrand in (7) is an even function of u, we can rewrite the expression for f_{z} in (7) as

$$
\begin{equation*}
f_{Z}(z)=\frac{1}{\pi} \int_{0}^{\infty} u e^{-\left(1+z^{2}\right) u^{2} / 2} d u \tag{8}
\end{equation*}
$$

Integrating the right-hand side of equation in (8) we obtain

$$
\begin{equation*}
f_{z}(z)=\frac{1}{\pi} \cdot \frac{1}{1+z^{2}}, \quad \text { for } z \in \mathbb{R} \tag{9}
\end{equation*}
$$

The cdf of Z is then obtained by integrating (9) to get

$$
F_{z}(z)=\int_{-\infty}^{z} f_{Z}(z) d z=\frac{1}{2}+\frac{1}{\pi} \arctan (z), \quad \text { for } z \in \mathbb{R}
$$

2. A random point (X, Y) is distributed uniformly on the square with vertices $(-1,-1),(1,-1),(1,1)$ and $(-1,1)$.
(a) Give the joint pdf for X and Y.
(b) Compute the following probabilities:
(i) $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$,
(ii) $\operatorname{Pr}(2 X-Y>0)$,
(iii) $\operatorname{Pr}(|X+Y|<2)$.

Solution: The square is pictured in Figure 1 and has area 4.

Figure 1: Sketch of square in Problem 2
(a) Consequently, the joint pdf of (X, Y) is given by

$$
f_{(X, Y)}(x, y)= \begin{cases}\frac{1}{4}, & \text { for }-1<x<1,-1<y<1 \tag{10}\\ 0 & \text { elsewhere }\end{cases}
$$

(b) Denoting the square in Figure 1 by R, it follows from (10) that, for any subset A of \mathbb{R}^{2},

$$
\begin{equation*}
\operatorname{Pr}[(x, y) \in A]=\iint_{A} f_{(X, Y)}(x, y) d x d y=\frac{1}{4} \cdot \operatorname{area}(A \cap R) \tag{11}
\end{equation*}
$$

that is, $\operatorname{Pr}[(x, y) \in A]$ is one-fourth the area of the portion of A in R.
We will use the formula in (11) to compute each of the probabilities in (i), (ii) and (iii).
(i) In this case, A is the circle of radius 1 around the origin in \mathbb{R}^{2} and pictured in Figure 2.
Note that the circle A in Figure 2 is entirely contained in the square R so that, by the formula in (11),

$$
\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)=\frac{\operatorname{area}(A)}{4}=\frac{\pi}{4}
$$

Figure 2: Sketch of A in Problem 2(i)
(ii) The set A in this case is pictured in Figure 3 on page 5 . Thus, in this case, $A \cap R$ is a trapezoid of area $2 \cdot \frac{\frac{1}{2}+\frac{3}{2}}{2}=2$, so that, by the formula in (11),

$$
\operatorname{Pr}(2 X-Y>0)=\frac{1}{4} \cdot \operatorname{area}(A \cap R)=\frac{1}{2}
$$

(iii) In this case, A is the region in the $x y$-plane between the lines $x+y=2$ and $x+y=-2$ (see Figure 4 on page 6). Thus, $A \cap R$ is R so that, by the formula in (11),

$$
\operatorname{Pr}(|X+Y|<2)=\frac{\operatorname{area}(R)}{4}=1
$$

3. Prove that if the joint cdf of X and Y satisfies

$$
F_{(X, Y)}(x, y)=F_{X}(x) F_{Y}(y),
$$

then for any pair of intervals (a, b) and (c, d),

$$
\operatorname{Pr}(a<X \leq b, c<Y \leq d)=\operatorname{Pr}(a<X \leqslant b) \operatorname{Pr}(c<Y \leqslant d)
$$

Figure 3: Sketch of A in Problem 2(ii)

Solution: First show that
$\operatorname{Pr}(a<X \leq b, c<Y \leq d)=F_{(X, Y)}(b, d)-F_{(X, Y)}(b, c)-F_{(X, Y)}(a, d)+F_{(X, Y)}(a, c)$ (see Problem 1 in Assignment \#15). Then,

$$
\begin{aligned}
\operatorname{Pr}(a<X \leq b, c<Y \leq d)= & F_{X}(b) F_{Y}(d)-F_{X}(b) F_{Y}(c) \\
& -F_{X}(a) F_{Y}(d)+F_{X}(a) F_{Y}(c) \\
= & \left(F_{X}(b)-F_{X}(a)\right) F_{Y}(d) \\
& -\left(F_{X}(b)-F_{X}(a)\right) F_{Y}(c) \\
= & \left(F_{X}(b)-F_{X}(a)\right)\left(F_{Y}(d)-F_{Y}(c)\right) \\
= & \operatorname{Pr}(a<X \leqslant b) \operatorname{Pr}(c<Y \leqslant d)
\end{aligned}
$$

which was to be shown.
4. The random pair (X, Y) has the joint distribution shown in Table 1 on page 6.

Figure 4: Sketch of A in Problem 2(iii)

$X \backslash Y$	2	3	4
1	$\frac{1}{12}$	$\frac{1}{6}$	0
2	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

Table 1: Joint Probability Distribution for X and $Y, p_{(X, Y)}$
(a) Show that X and Y are not independent.

Solution: Table 2 shows the marginal distributions of X and Y on the margins on page 7 .
Observe from Table 2 that

$$
p_{(X, Y)}(1,4)=0,
$$

while

$$
p_{X}(1)=\frac{1}{4} \quad \text { and } \quad p_{Y}(4)=\frac{1}{3} .
$$

Thus,

$$
p_{X}(1) \cdot p_{Y}(4)=\frac{1}{12}
$$

$X \backslash Y$	2	3	4	p_{X}
1	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
2	$\frac{1}{6}$	0	$\frac{1}{3}$	$\frac{1}{2}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
p_{Y}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

Table 2: Joint pdf for X and Y and marginal distributions p_{X} and p_{Y} so that

$$
p_{(X, Y)}(1,4) \neq p_{X}(1) \cdot p_{Y}(4)
$$

and, therefore, X and Y are not independent.
(b) Give a probability table for random variables U and V that have the same marginal distributions as X and Y, respectively, but are independent.
Solution: Table 3 on page 7 shows the joint pmf of (U, V) and the marginal distributions, p_{U} and p_{V}.

$U \backslash V$	2	3	4	p_{U}
1	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$
2	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$
p_{V}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

Table 3: Joint pdf for U and V and their marginal distributions.
5. Let X denote the number of trials needed to obtain the first head, and let Y be the number of trials needed to get two heads in repeated tosses of a fair coin. Are X and Y independent random variables?
Solution: X has a geometric distribution with parameter $p=\frac{1}{2}$, so that

$$
\begin{equation*}
p_{X}(k)=\frac{1}{2^{k}}, \quad \text { for } k=1,2,3, \ldots \tag{12}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\operatorname{Pr}[Y=2]=\frac{1}{4} \tag{13}
\end{equation*}
$$

since, in two repeated tosses of a coin, the events are $H H, H T, T H$ and $T T$, and these events are equally likely.

Next, consider the joint event $(X=2, Y=2)$. Note that

$$
(X=2, Y=2)=[X=2] \cap[Y=2]=\emptyset
$$

since $[X=2]$ corresponds to the event $T H$, while $[Y=2]$ to the event $H H$. Thus,

$$
\operatorname{Pr}(X=2, Y=2)=0
$$

while

$$
p_{X}(2) \cdot p_{Y}(2)=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16},
$$

by (12) and (13). Thus,

$$
p_{(X, Y)}(2,2) \neq p_{X}(2) \cdot p_{X}(2) .
$$

Hence, X and Y are not independent.
6. Let $X \sim \operatorname{Normal}(0,1)$ and put $Y=X^{2}$. Find the pdf for Y.

Solution: The pdf of X is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { for }-\infty<x<\infty
$$

We compute the pdf for Y by first determining its cdf:

$$
\begin{aligned}
\operatorname{Pr}(Y \leqslant y) & =P\left(X^{2} \leqslant y\right) \quad \text { for } y \geqslant 0 \\
& =\operatorname{Pr}(-\sqrt{y} \leqslant X \leqslant \sqrt{y}) \\
& =\operatorname{Pr}(-\sqrt{y}<X \leqslant \sqrt{y}), \quad \text { since } X \text { is continuous. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{Pr}(Y \leqslant y) & =\operatorname{Pr}(X \leqslant \sqrt{y})-\operatorname{Pr}(X \leqslant-\sqrt{y}) \\
& =F_{X}(\sqrt{y})-F_{x}(-\sqrt{y}) \text { for } y>0
\end{aligned}
$$

We then have that the cdf of Y is

$$
F_{Y}(y)=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) \quad \text { for } y>0
$$

from which we get, after differentiation with respect to y,

$$
\begin{aligned}
f_{Y}(y) & =F_{X}^{\prime}(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}+F_{X}^{\prime}(-\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}} \\
& =f_{X}(\sqrt{y}) \frac{1}{2 \sqrt{y}}+f_{X}(-\sqrt{y}) \frac{1}{2 \sqrt{y}} \\
& =\frac{1}{2 \sqrt{y}}\left\{\frac{1}{\sqrt{2 \pi}} e^{-y / 2}+\frac{1}{\sqrt{2 \pi}} e^{-y / 2}\right\} \\
& =\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{y}} e^{-y / 2}
\end{aligned}
$$

for $y>0$, where we have applied the Chain Rule. Hence,

$$
f_{Y}(y)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{y}} e^{-y / 2}, & \text { for } y>0 \\ 0 & \text { for } y \leqslant 0\end{cases}
$$

7. Let X and Y be independent $\operatorname{Normal}(0,1)$ random variables. Compute

$$
P\left(X^{2}+Y^{2}<1\right)
$$

Solution: Since $X, Y \sim \operatorname{Normal}(0,1)$, their pdfs are given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { for } x \in \mathbb{R}
$$

and

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}, \quad \text { for } y \in \mathbb{R}
$$

respectively. The joint pdf of (X, Y) is then

$$
\begin{equation*}
f_{(X, Y)}(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{14}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
P\left(X^{2}+Y^{2}<1\right)=\iint_{x^{2}+y^{2}<1} f_{(X, Y)}(x, y) d x d y \tag{15}
\end{equation*}
$$

where the integrand is given in (14) and the integral in (15) is evaluated over the disc of radius 1 centered around the origin in \mathbb{R}^{2}.
We evaluate the integral in (15) by changing to polar coordinates to get

$$
\begin{aligned}
P\left(X^{2}+Y^{2}<1\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} e^{-r^{2} / 2} r d r d \theta \\
& =\int_{0}^{1} e^{-r^{2} / 2} r d r \\
& =\left[-e^{-r^{2} / 2}\right]_{0}^{1} \\
& =1-e^{-1 / 2}
\end{aligned}
$$

or $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)=1-\frac{1}{\sqrt{e}}$.
8. Suppose that X and Y are independent random variables such that $X \sim$ $\operatorname{Uniform}(0,1)$ and $Y \sim \operatorname{Exponential}(1)$.
(a) Let $Z=X+Y$. Find F_{Z} and f_{Z}.

Solution: Since $X \sim \operatorname{Uniform}(0,1)$ and $Y \sim \operatorname{Exponential(1),~their~pdfs~}$ are given by

$$
f_{X}(x)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}e^{-y} & \text { if } y>0 \\ 0 & \text { if } y \leqslant 0\end{cases}
$$

respectively. The joint pdf of (X, Y) is then

$$
f_{(X, Y)}(x, y)= \begin{cases}e^{-y} & \text { if } 0<x<1, y>0 \tag{16}\\ 0 & \text { elsewhere }\end{cases}
$$

We compute the cdf of Z,

$$
F_{z}(z)=\operatorname{Pr}(X \leqslant u)=\operatorname{Pr}(X+Y \leqslant z)
$$

or

$$
\begin{equation*}
F_{U}(u)=\iint_{x+y \leqslant z} f_{(X, Y)}(x, y) d x d y \tag{17}
\end{equation*}
$$

where the integrand in (17) is given in (16) and the integration is done over the region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y \leqslant z\right\} .
$$

Make the change variables

$$
\begin{aligned}
u & =x \\
v & =x+y,
\end{aligned}
$$

so that

$$
\begin{align*}
x & =u \\
y & =v-u, \tag{18}
\end{align*}
$$

in the integral in (17) to obtain

$$
\begin{equation*}
F_{Z}(z)=\int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{(X, Y)}(u, v-u)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{19}
\end{equation*}
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{cc}
1 & 0 \tag{20}\\
-1 & 1
\end{array}\right)=1
$$

is the Jacobian determinant of the transformation in (18). It then follows from (19) and (20) that

$$
\begin{equation*}
F_{Z}(z)=\int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{(X, Y)}(u, v-u) d u d v \tag{21}
\end{equation*}
$$

Differentiating with respect to z and using the definition of the joint pdf of (X, Y) in (16) we obtain from (21) that

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} f_{(X, Y)}(u, z-u) d u \tag{22}
\end{equation*}
$$

where we have also used the Fundamental Theorem of Calculus.
Next, use the definition of $f_{(X, Y)}$ in (16) to rewrite (22) as

$$
\begin{equation*}
f_{Z}(z)=\int_{0}^{1} f_{(X, Y)}(u, z-u) d u, \quad \text { for } z>0 \tag{23}
\end{equation*}
$$

We consider two cases, (i) $0<z \leqslant 1$, and (ii) $z>1$.
(i) For $0<z \leqslant 1$, use (16) to obtain from (23) that

$$
\begin{aligned}
f_{Z}(z) & =\int_{0}^{z} e^{u-z} d u \\
& =e^{-z} \int_{0}^{z} e^{u} d u \\
& =1-e^{-z}
\end{aligned}
$$

so that

$$
\begin{equation*}
f_{z}(z)=1-e^{-z}, \quad \text { for } 0<z \leqslant 1 \tag{24}
\end{equation*}
$$

(ii) For $z>0$, use (16) to obtain from (23) that

$$
\begin{aligned}
f_{z}(z) & =\int_{0}^{1} e^{u-z} d u \\
& =e^{-z} \int_{0}^{1} e^{u} d u \\
& =(e-1) e^{-z}
\end{aligned}
$$

so that

$$
\begin{equation*}
f_{z}(z)=(e-1) e^{-z}, \quad \text { for } z>1 \tag{25}
\end{equation*}
$$

Combining (24) and (25) we obtain the cdf

$$
f_{Z}(z)= \begin{cases}0 & \text { for } z \leqslant 0 \tag{26}\\ 1-e^{-z}, & \text { for } 0<z \leqslant 1 \\ (e-1) e^{-z}, & \text { for } z>1\end{cases}
$$

Finally, integrating (26) yields the cdf

$$
F_{z}(z)= \begin{cases}0 & \text { for } z \leqslant 0 ; \\ z+e^{-z}-1, & \text { for } 0<z \leqslant 1 ; \\ e^{-1}+(e-1)\left(e^{-1}-e^{-z}\right), & \text { for } z>1 .\end{cases}
$$

(b) Let $U=Y / X$. Find F_{U} and f_{U}.

Solution: Since $X \sim \operatorname{Uniform}(0,1)$ and $Y \sim \operatorname{Exponential(1),~their~pdfs~}$ are given by

$$
f_{X}(x)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}e^{-y} & \text { if } y>0 \\ 0 & \text { if } y \leqslant 0\end{cases}
$$

respectively. The joint pdf of (X, Y) is then

$$
f_{(X, Y)}(x, y)= \begin{cases}e^{-y} & \text { if } 0<x<1, y>0 \tag{27}\\ 0 & \text { elsewhere }\end{cases}
$$

We compute the cdf of U,

$$
F_{U}(u)=\operatorname{Pr}(U \leqslant u)=\operatorname{Pr}\left(\frac{Y}{X} \leqslant u\right)
$$

or

$$
\begin{equation*}
F_{U}(u)=\iint_{\frac{y}{x} \leqslant u} f_{(X, Y)}(x, y) d x d y \tag{28}
\end{equation*}
$$

where the integrand in (28) is given in (27) and the integration is done over the region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{y}{x} \leqslant u\right.\right\} .
$$

Make the change variables

$$
\begin{aligned}
w & =x \\
v & =\frac{y}{x}
\end{aligned}
$$

so that

$$
\begin{align*}
& x=w \tag{29}\\
& y=w v,
\end{align*}
$$

in the integral in (28) to obtain

$$
\begin{equation*}
F_{U}(u)=\int_{-\infty}^{u} \int_{-\infty}^{\infty} f_{(X, Y)}(w, w v)\left|\frac{\partial(x, y)}{\partial(w, v)}\right| d w d v \tag{30}
\end{equation*}
$$

where

$$
\frac{\partial(x, y)}{\partial(w, v)}=\operatorname{det}\left(\begin{array}{cc}
1 & 0 \tag{31}\\
v & w
\end{array}\right)=w
$$

is the Jacobian determinant of the transformation in (29). It then follows from (30) and (31) that

$$
\begin{equation*}
F_{U}(u)=\int_{-\infty}^{u} \int_{-\infty}^{\infty} f_{(X, Y)}(w, w v)|w| d w d v \tag{32}
\end{equation*}
$$

Differentiating with respect to u and using the definition of the joint pdf of (X, Y) in (27) we obtain from (32) that

$$
\begin{equation*}
f_{U}(u)=\int_{-\infty}^{\infty} f_{(X, Y)}(w, w u)|w| d w \tag{33}
\end{equation*}
$$

where we have also used the Fundamental Theorem of Calculus.
Next, use the definition of $f_{(X, Y)}$ in (27) to rewrite (33) as

$$
\begin{equation*}
f_{U}(u)=\int_{0}^{1} e^{-u w} w d w, \quad \text { for } u>1 \tag{34}
\end{equation*}
$$

We evaluate the integral in (34) by integration by parts to get

$$
\begin{align*}
f_{U}(u) & =\left[-\frac{w}{u} e^{-u w}-\frac{1}{u^{2}} e^{-u w}\right]_{0}^{1} \tag{35}\\
& =\frac{1}{u^{2}}-\frac{1}{u} e^{-u}-\frac{1}{u^{2}} e^{-u}, \quad \text { for } u>0
\end{align*}
$$

In order to compute the cdf, F_{U}, we can integrate (28) in Cartesian coordinates to get

$$
\begin{aligned}
F_{U}(u) & =\int_{0}^{1} \int_{0}^{u x} e^{-y} d y d x \\
& =\int_{0}^{1}\left[1-e^{-u x}\right] d x \\
& =1+\frac{1}{u}\left[e^{-u}-1\right]
\end{aligned}
$$

so that

$$
F_{U}(u)= \begin{cases}1+\frac{1}{u}\left[e^{-u}-1\right], & \text { for } u>0 \tag{36}\\ 0 & \text { for } u \leqslant 0\end{cases}
$$

Note that differentiating $F_{U}(u)$ in (36) with respect to u, for $u>0$, leads to (35). We then have that

$$
f_{U}(u)= \begin{cases}\frac{1}{u^{2}}\left(1-e^{-u}\right)-\frac{1}{u} e^{-u}, & \text { for } u>0 \\ 0 & \text { for } u \leqslant 0\end{cases}
$$

9. Let $X \sim$ Exponential(1), and define Y to be the integer part of $X+1$; that is, $Y=i+1$ if and only if $i \leqslant X<i+1$, for $i=0,1,2, \ldots$ Find the pmf of Y, and deduce that $Y \sim \operatorname{Geometric}(p)$ for some $0<p<1$. What is the value of p ?
Solution: Compute

$$
\operatorname{Pr}[Y=i+1]=\operatorname{Pr}[i \leqslant X<i+1]=\operatorname{Pr}[i<X \leqslant i+1]
$$

since X is continuous; so that

$$
\begin{equation*}
\operatorname{Pr}[Y=i+1]=\int_{i}^{i+1} f_{X}(x) d x \tag{37}
\end{equation*}
$$

where

$$
f_{X}(x)= \begin{cases}e^{-x} & \text { if } x>0 \tag{38}\\ 0 & \text { if } x \leqslant 0\end{cases}
$$

since $X \sim$ Exponential(1).
Evaluating the integral in (37), for $i \geqslant 0$ and f_{X} as given in (38), yields

$$
\begin{aligned}
\operatorname{Pr}[Y=i+1] & =\int_{i}^{i+1} e^{-x} d x \\
& =\left[-e^{-x}\right]_{i}^{i+1} \\
& =e^{-i}-e^{-i-1}
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}[Y=i+1]=\left(\frac{1}{e}\right)^{i}\left(1-\frac{1}{e}\right) \tag{39}
\end{equation*}
$$

It follows from (39) that $Y \sim \operatorname{Geometric}(p)$ with $p=1-\frac{1}{e}$.
10. The expected number of typographical errors on a page of a certain magazine is 0.20 . What is the probability that an article of 10 pages contains (a) no typographical errors, and (b) two or more typographical errors. Explain your reasoning.
Solution: Let X denote the number of typographical errors in one page. Then, X may be modeled by a Poisson random variable with parameter λ, where $E(X)=\lambda$, and $\lambda=0.20$ in this problem. We then have that the pmf of X is

$$
\begin{equation*}
p_{X}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad \text { for } k=0,1,2,3, \ldots \tag{40}
\end{equation*}
$$

The moment generating function of X is

$$
\begin{equation*}
\psi_{X}(t)=e^{\lambda\left(e^{t}-1\right)}, \quad \text { for } t \in \mathbb{R} \tag{41}
\end{equation*}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$, where $n=10$, denote the number of typographical errors in pages 1 through n, respectively. We may assume that $X_{1}, X_{2}, \ldots X_{n}$ are independent and that they all have a $\operatorname{Poisson}(\lambda)$ distribution.
Put $Y=X_{1}+X_{2}+\cdots+X_{n}$. Then Y gives the number of typographical errors in the n pages of the article. The moment generating function of Y is then

$$
\begin{equation*}
\psi_{Y}(t)=\psi_{X_{1}}(t) \cdot \psi_{X_{2}}(t) \cdots \psi_{X_{n}}(t), \quad \text { for } t \in \mathbb{R} \tag{42}
\end{equation*}
$$

by the independence of the X_{i} 's. It then follows from (42) and (41) that

$$
\psi_{Y}(t)=\left[e^{\lambda\left(e^{t}-1\right)}\right]^{n} \quad \text { for } t \in \mathbb{R},
$$

or

$$
\begin{equation*}
\psi_{Y}(t)=e^{n \lambda\left(e^{t}-1\right)} \quad \text { for } t \in \mathbb{R} \tag{43}
\end{equation*}
$$

Comparing (43) with (41), we see that Y has a Poisson distribution with parameter $n \lambda$; that is,

$$
Y \sim \operatorname{Poisson}(n \lambda)
$$

so that, in view of (40),

$$
\begin{equation*}
p_{Y}(k)=\frac{(n \lambda)^{k}}{k!} e^{-n \lambda}, \quad \text { for } k=0,1,2,3, \ldots \tag{44}
\end{equation*}
$$

In this problem $n=10$ and $\lambda=0.2$.
(a) The probability that the article contains no typographical errors is

$$
\operatorname{Pr}[Y=0]=e^{-n \lambda}=e^{-2} \approx 13.53 \% .
$$

(b) The probability that the article contains two or more typographical errors is

$$
\begin{aligned}
\operatorname{Pr}[Y \geqslant 2] & =1-\operatorname{Pr}[Y \leqslant 1] \\
& =1-\operatorname{Pr}[Y=0]-\operatorname{Pr}[Y=1] \\
& =1-e^{-n \lambda}-n \lambda e^{-n \lambda} \\
& =1-e^{-2}-2 e^{-2} \\
& \approx 59.4 \% .
\end{aligned}
$$

