Review Problems for Exam 3

(1) Suppose that a book with n pages contains on average λ misprints per page. What is the probability that there will be at least m pages which contain more than k missprints?
(2) Suppose that the total number of items produced by a certain machine has a Poisson distribution with mean λ, all items are produced independently of one another, and the probability that any given item produced by the machine will be defective is p.
Let X denote the number of defective items produced by the machine.
(a) Determine the marginal distribution of the number of X.
(b) Let Y denote the number of non-defective items produced by the machine. Show that X and Y are independent random variables.
(3) Suppose that the proportion of color blind people in a certain population is 0.005 . Estimate the probability that there will be more than one color blind person in a random sample of 600 people from that population.
(4) An airline sells 200 tickets for a certain flight on an airplane that has 198 seats because, on average, 1% of purchasers of airline tickets do not appear for departure of their flight. Estimate the probability that everyone who appears for the departure of this flight will have a seat.
(5) Let X denote a positive random variable such that $\ln (X)$ has a $\operatorname{Normal}(0,1)$ distribution.
(a) Give the pdf of X and compute its expectation.
(b) Estimate $\operatorname{Pr}(X \leq 6.5)$.
(6) Forty seven digits are chosen at random and with replacement from $\{0,1,2, \ldots, 9\}$. Estimate the probability that their average lies between 4 and 6 .
(7) Let $X_{1}, X_{2}, \ldots, X_{30}$ be independent random variables each having a discrete distribution with pmf:

$$
p(x)= \begin{cases}1 / 4 & \text { if } x=0 \text { or } x=2 \\ 1 / 2 & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

Estimate the probability that $X_{1}+X_{2}+\cdots+X_{30}$ is at most 33 .
(8) Roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of the 36 rolls. Estimate the probability that $108 \leq Y \leq 144$.
Suggestion: Since the event of interest is $(Y \in\{108,109, \ldots, 144\})$, rewrite $\operatorname{Pr}(108 \leq Y \leq 144)$ as

$$
\operatorname{Pr}(107.5<Y \leq 144.5)
$$

(9) Let $Y \sim \operatorname{Binomial}(100,1 / 2)$. Use the Central Limit Theorem to estimate the value of $\operatorname{Pr}(Y=50)$.
(10) Let $Y \sim \operatorname{Binomial}(n, 0.55)$. Find the smallest value of n such that, approximately,

$$
\operatorname{Pr}(Y / n>1 / 2) \geq 0.95
$$

(11) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Poisson distribution with mean λ. Thus, $Y=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with mean $n \lambda$. Moreover, by the Central Limit Theorem, $\bar{X}=Y / n$ has, approximately, a $\operatorname{Normal}(\lambda, \lambda / n)$ distribution for large n. Show that $u(Y / n)=\sqrt{Y / n}$ is a function of Y / n which is essentially free of λ.

