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Solutions to Review Problems for Exam 3

1. Suppose that a book with n pages contains on average � misprints per page.
What is the probability that there will be at least m pages which contain more
than k missprints?

Solution: Let Y denote the number of misprints in one page. Then, we may
assume that Y follows a Poisson(�) distribution; so that

Pr[Y = r] =
�r

r!
e−�, for r = 0, 1, 2, . . .

Thus, the probability that there will be more than k missprints in a given page
is

p =
∞∑

r=k+1

Pr[Y = r]

=
∞∑

r=k+1

�r

r!
e−�.

(1)

Next, let X denote the number of the pages out of the n that contain more
than k missprints. Then, X ∼ Binomial(n, p), where p is as given in (1). Then
the probability that there will be at least m pages which contain more than k
missprints is

Pr[X ⩾ m] =
n∑

ℓ=m

(
n

ℓ

)
pℓ(1− p)n−ℓ,

where

p =
∞∑

r=k+1

�r

r!
e−�.

□

2. Suppose that the total number of items produced by a certain machine has a
Poisson distribution with mean �, all items are produced independently of one
another, and the probability that any given item produced by the machine will
be defective is p.

Let X denote the number of defective items produced by the machine.

(a) Determine the marginal distribution of the number of defective items, X.
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Solution: Let N denote the number of items produced by the machine.
Then,

N ∼ Poisson(�), (2)

so that

Pr[N = n] =
�n

n!
e−�, for n = 0, 1, 2, . . .

Now, since all items are produced independently of one another, and the
probability that any given item produced by the machine will be defective
is p, X has a conditional distribution (conditioned on N = n) that is
Binomial(n, p); thus,

Pr[X = k ∣ N = n] =

⎧⎨⎩
(
n

k

)
pk(1− p)n−k, for k = 0, 1, 2, . . . , n;

0 elsewhere.

(3)

Then,

Pr[X = k] =
∞∑
n=0

Pr[X = k,N = n]

=
∞∑
n=0

Pr[N = n] ⋅ Pr[X = k ∣ N = n],

where Pr[X = k ∣ N = n] = 0 for n < k, so that, using (2) and (3),

Pr[X = k] =
∞∑
n=k

�n

n!
e−� ⋅

(
n

k

)
pk(1− p)n−k

=
e−�

k!
pk

∞∑
n=k

�n
1

(n− k)!
(1− p)n−k.

(4)

Next, make the change of variables ℓ = n− k in the last summation in (4)
to get

Pr[X = k] =
e−�

k!
pk

∞∑
ℓ=0

�ℓ+k
1

ℓ!
(1− p)ℓ,
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so that

Pr[X = k] =
(�p)k

k!
e−�

∞∑
ℓ=0

1

ℓ!
[�(1− p)]ℓ

=
(�p)k

k!
e−�e�(1−p)

=
(�p)k

k!
e−�p,

which shows that
X ∼ Poisson(�p). (5)

□

(b) Let Y denote the number of non–defective items produced by the machine.
Show that X and Y are independent random variables.

Solution: Similar calculations to those leading to (5) show that

Y ∼ Poisson(�(1− p)), (6)

since the probability of an item coming out non–defective is 1− p.
Next, observe that Y = N −X and compute the joint probability

Pr[X = k, Y = ℓ] = Pr[X = k,N = k + ℓ]

= Pr[N = k + ℓ] ⋅ Pr[X = k ∣ N = k + ℓ]

=
�k+ℓ

(k + ℓ)!
e−� ⋅

(
k + ℓ

k

)
pk(1− p)ℓ

by virtue of (2) and (3). Thus,

Pr[X = k, Y = ℓ] =
�k+ℓ

k! ℓ!
e−� pk(1− p)ℓ

=
�k+ℓ

k! ℓ!
e−� pk(1− p)ℓ,

where
e−� = e−[p+(1−p)]� = e−p� ⋅ e−(1−p)�.

Thus,

Pr[X = k, Y = ℓ] =
(p�)k

k!
e−p� ⋅ [(1− p)�]ℓ

ℓ!
e−(1−p)�

= p
X

(k) ⋅ p
Y

(ℓ),
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in view of (5) and (6). Hence, X and Y are independent. □

3. Suppose that the proportion of color blind people in a certain population is
0.005. Estimate the probability that there will be more than one color blind
person in a random sample of 600 people from that population.

Solution: Set p = 0.005 and n = 600. Denote by Y the number of color blind
people in the sample. The, we may assume that Y ∼ Binomial(n, p). Since p
is small and n is large, we may use the Poisson approximation to the binomial
distribution to get

Pr[Y = k] ≈ �k

k!
e−�,

where � = np = 3.

Then,
Pr[Y > 1] = 1− Pr[Y ⩽ 1]

≈ 1− e−3 − 3e−3

≈ 0.800852.

Thus, the probability that there will be more than one color blind person in a
random sample of 600 people from that population is about 80%. □

4. An airline sells 200 tickets for a certain flight on an airplane that has 198
seats because, on average, 1% of purchasers of airline tickets do not appear for
departure of their flight. Estimate the probability that everyone who appears
for the departure of this flight will have a seat.

Solution: Set p = 0.01, n = 200 and let Y denote the number of ticket
purchasers that do not appear for departure. Then, we may assume that Y ∼
Binomial(n, p). We want to estimate the probability Pr[Y > 2]. Using the
Poisson(�), with � = np = 2, approximation to the distribution of Y we get

Pr[Y ⩾ 2] = 1− Pr[Y ⩽ 1]

≈ 1− e−2 − 2e−2

≈ 0.594.

Thus, the probability that everyone who appears for the departure of this flight
will have a seat is about 59.4%. □
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5. Let X denote a positive random variable such that ln(X) has a Normal(0, 1)
distribution.

(a) Give the pdf of X and compute its expectation.

Solution: Set Z = ln(X), so that Z ∼ Normal(0, 1); thus,

f
Z
(y) =

1√
2�

e−z
2/2, for z ∈ ℝ. (7)

Next, compute the cdf for X,

F
X

(x) = Pr(X ⩽ x), for x > 0,

to get
F

X
(x) = Pr[ln(X) ⩽ ln(x)]

= Pr[Z ⩽ ln(x)]

= F
Z
(ln(x)),

so that

F
X

(x) =

{
F

Z
(ln(x)), for x > 0;

0 for x ⩽ 0.
(8)

Differentiating (8) with respect to x, for x > 0, we obtain

f
X

(x) = F ′
Z
(ln(x)) ⋅ 1

x
,

so that

f
X

(x) = f
Z
(ln(x)) ⋅ 1

x
, (9)

where we have used the Chain Rule. Combining (7) and (9) yields

f
X

(x) =

⎧⎨⎩
1√

2� x
e−(lnx)

2/2, for x > 0;

0 for x ⩽ 0.
(10)

In order to compute the expected value of X, use the pdf in (10) to get

E(X) =

∫ ∞
−∞

xf
X

(x) dx

=

∫ ∞
0

1√
2�

e−(lnx)
2/2 dx.

(11)
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Make the change of variables u = lnx in the last integral in (11) to get

du =
1

x
dx, so that dx = eudu and

E(X) =

∫ ∞
−∞

1√
2�

eu−u
2/2 du. (12)

Complete the square in the exponent of the integrand in (12) to obtain

E(X) = e1/2
∫ ∞
−∞

1√
2�

e−(u−1)
2/2 du. (13)

Next, make the change of variables w = u − 1 for the integral in (13) to
get

E(X) = e1/2
∫ ∞
−∞

1√
2�

e−w
2/2 dw =

√
e.

□

(b) Estimate Pr(X ≤ 6.5).

Solution: Use the result in (8) to compute

Pr(X ≤ 6.5) = F
Z
(ln(6.5)), where Z ∼ Normal(0, 1).

Thus,
Pr(X ≤ 6.5) =̇ F

Z
(1.8718) =̇ 0.969383,

or about 97%. □

6. Forty seven digits are chosen at random and with replacement from {0, 1, 2, . . . , 9}.
Estimate the probability that their average lies between 4 and 6.

Solution: Let X1, X2, . . . , Xn, where n = 47, denote the 47 digits. Since the
sampling is done without replacement, the random variables X1, X2, . . . , Xn are
identically uniformly distributed over the digits {0, 1, 2, . . . , 9}; in other words,
X1, X2, . . . , Xn is a random sample from the discrete Uniform(10) distribution.
Consequently, the mean of the distribution is

� =
10 + 1

2
= 5.5, (14)

and the variance is

�2 =
(10 + 1)(10− 1)

12
=

99

12
=

33

4
= 8.25 (15)
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We would like to estimate
Pr(4 ⩽ Xn ⩽ 6),

or
Pr(4− � ⩽ Xn − � ⩽ 6− �),

where � is given in (14), so that

Pr(4 ⩽ Xn ⩽ 6) = Pr(−1.5 ⩽ Xn − � ⩽ 0.5) (16)

Next, divide the last inequality in (16) by �/
√
n, where � is as given in (15), to

get

Pr(4 ⩽ Xn ⩽ 6) = Pr

(
−3.58 ⩽

Xn − �
�/
√
n
⩽ 1.19

)
(17)

For n large (say, n = 47), we can apply the Central Limit Theorem to obtain
from (17) that

Pr(4 ⩽ Xn ⩽ 6) ≈ Pr (−3.58 ⩽ Z ⩽ 1.19) , where Z ∼ Normal(0, 1). (18)

It follows from (18) and the definition of the cdf that

Pr(4 ⩽ Xn ⩽ 6) ≈ F
Z
(1.19)− F

Z
(−3.58), (19)

where F
Z

is the cdf of Z ∼ Normal(0, 1). Using the symmetry of the pdf of
Z ∼ Normal(0, 1), we can re–write (19) as

Pr(4 ⩽ Xn ⩽ 6) ≈ F
Z
(1.19) + F

Z
(3.58)− 1. (20)

Finally, using a table of standard normal probabilities, we obtain from (20) that

Pr(4 ⩽ Xn ⩽ 6) ≈ 0.8830 + 0.9998− 1 = 0.8828.

Thus, the probability that the average of the 47 digits is between 4 and 6 is
about 88.3%. □

7. Let X1, X2, . . . , X30 be independent random variables each having a discrete
distribution with pmf:

p(x) =

⎧⎨⎩
1/4, if x = 0 or x = 2;

1/2, if x = 1;

0, otherwise.
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Estimate the probability that X1 +X2 + ⋅ ⋅ ⋅+X30 is at most 33.

Solution: First, compute the mean, � = E(X), and variance, �2 = Var(X), of
the distribution:

� = 0 ⋅ 1

4
+ 1 ⋅ 1

2
+ 2

1

4
= 1. (21)

�2 = E(X2)− [E(X)]2, (22)

where

E(X2) = 02 ⋅ 1

4
+ 12 ⋅ 1

2
+ 221

4
= 1.5; (23)

so that, combining (21), (22) and (23),

�2 = 1.5− 1 = 0.5. (24)

Next, let Y =
n∑
k=1

Xk, where n = 30. We would like to estimate

Pr[Y ⩽ 33]. (25)

By the Central Limit Theorem

Pr

(
Y − n�√
n �

⩽

)
≈ Pr(Z ⩽ z), for z ∈ ℝ, (26)

where Z ∼ Normal(0, 1), � = 1, �2 = 1.5 and n = 30. It follows from (26) that
we can estimate the probability in (25) by

Pr[Y ⩽ 33] ≈ Pr(Z ⩽ 0.77) =̇ 0.7794. (27)

Thus, according to (27), the probability that X1 +X2 + ⋅ ⋅ ⋅+X30 is at most 33
is about 78%. □

8. Roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of
the 36 rolls. Estimate the probability that 108 ≤ Y ≤ 144.

Suggestion: Since the event of interest is (Y ∈ {108, 109, . . . , 144}), rewrite
Pr(108 ≤ Y ≤ 144) as

Pr(107.5 < Y ⩽ 144.5).

Solution: Let X1, X2, . . . , Xn, where n = 36, denote the outcomes of the
36 rolls. Since we are assuming that the die is balanced, the random variables
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X1, X2, . . . , Xn are identically uniformly distributed over the digits {1, 2, . . . , 6};
in other words, X1, X2, . . . , Xn is a random sample from the discrete Uniform(6)
distribution. Consequently, the mean of the distribution is

� =
6 + 1

2
= 3.5, (28)

and the variance is

�2 =
(6 + 1)(6− 1)

12
=

35

12
. (29)

We also have that

Y =
n∑
k=1

Xk,

where n = 36.

By the Central Limit Theorem,

Pr(107.5 < Y ⩽ 144.5) ≈ Pr

(
107.5− n�√

n�
< Z ⩽

144.5− n�√
n�

)
, (30)

where Z ∼ Normal(0, 1), n = 36, and � and � are given in (28) and (29),
respectively. We then have from (30) that

Pr(107.5 < Y ⩽ 144.5) ≈ Pr (−1.81 < Z ⩽ 1.81)

≈ F
Z
(1.81)− F

Z
(−1.81)

≈ 2F
Z
(1.81)− 1

≈ 2(0.9649)− 1

≈ 0.9298;

so that the probability that 108 ⩽ Y ⩽ 144 is about 93%. □

9. Let Y ∼ Binomial(100, 1/2). Use the Central Limit Theorem to estimate the
value of Pr(Y = 50).

Solution: We use the so–called continuity correction and estimate

Pr(49.5 < Y ⩽ 50.5).
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By the Central Limit Theorem,

Pr(49.5 < Y ⩽ 50.5) ≈ Pr

(
49.5− n�√

n�
< Z ⩽

50.5− n�√
n�

)
, (31)

where Z ∼ Normal(0, 1), n = 100, and n� = 50 and

� =

√
1

2

(
1− 1

2

)
=

1

2
.

We then obtain from (31) that

Pr(49.5 < Y ⩽ 50.5) ≈ Pr (−0.1 < Z ⩽ 0.1)

≈ F
Z
(0.1)− F

Z
(−0.1)

≈ 2F
Z
(0.1)− 1

≈ 2(0.5398)− 1

≈ 0.0796.

Thus,
Pr(Y = 50) ≈ 0.08,

or about 8%. □

10. Let Y ∼ Binomial(n, 0.55). Find the smallest value of n such that, approxi-
mately,

Pr(Y/n > 1/2) ⩾ 0.95. (32)

Solution: By the Central Limit Theorem,

Y

n
− 0.55√

(0.55)(1− 0.55)/
√
n

D−→ Z ∼ Normal(0, 1) as n→∞. (33)

Thus, according to (32) and (33), we need to find the smallest value of n such
that

Pr

(
Z >

0.5− 0.55

(0.4975)/
√
n

)
⩾ 0.95,
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or

Pr

(
Z > −

√
n

10

)
⩾ 0.95. (34)

The expression in (34) is equivalent to

1− Pr

(
Z ⩽ −

√
n

10

)
⩾ 0.95,

which can be re-written as

1− F
Z

(
−
√
n

10

)
⩾ 0.95, (35)

where F
Z

is the cdf of Z ∼ Normal(0, 1).

By the symmetry of the pdf for Z ∼ Normal(0, 1), (35) is equivalent to

F
Z

(√
n

10

)
⩾ 0.95. (36)

The smallest value of n for which (36) holds true occurs when

√
n

10
⩾ z∗, (37)

where z∗ is a positive real number with the property

F
Z
(z∗) = 0.95. (38)

The equality in (38) occurs approximately when

z∗ = 1.645. (39)

It follows from (37) and (39) that (32) holds approximately when

√
n

10
⩾ 1.645,

or n ⩾ 270.6025. Thus, n = 271 is the smallest value of n such that, approxi-
mately,

Pr(Y/n > 1/2) ⩾ 0.95.

□
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11. Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with mean

�. Thus, Y =
n∑
i=1

Xi has a Poisson distribution with mean n�. Moreover, by

the Central Limit Theorem, X = Y/n has, approximately, a Normal(�, �/n)
distribution for large n. Show that u(Y/n) =

√
Y/n is a function of Y/n which

is essentially free of �.

Solution: We will show that, for large values of n, the distribution of

2
√
n

(√
Y

n
−
√
�

)
(40)

is independent of �. In fact, we will show that, for large values of n, the distri-
bution of the random variables in (40) can be approximated by a Normal(0, 1)
distribution.

First, note that by the Law of Large Numbers,

Y

n

Pr−→ �, as n→∞.

Thus, for large values of n, we can approximate u(Y/n) by its linear approxi-
mation around �

u(Y/n) ≈ u(�) + u′(�)

(
Y

n
− �
)
, (41)

where

u′(�) =
1

2
√
�
. (42)

Combining (41) and (42) we see that, for large values of n,

√
Y

n
−
√
� ≈ 1

2
√
n
⋅

Y

n
− �√
�

n

. (43)

Since, by the Central Limit Theorem,

Y

n
− �√
�

n

D−→ Z ∼ Normal(0, 1) as n→∞, (44)
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it follows from (43) and (44) that

2
√
n

(√
Y

n
−
√
�

)
D−→ Z ∼ Normal(0, 1) as n→∞,

which was to be shown. □


