Solutions to Review Problems for Final Exam

1. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card in red on one side and white on the other side. A card is picked at random and placed on a table. Compute the probability that if a given color is shown on top, the color on the other side is the same as that of the top.

Solution: Each card has a likelihood of 1/3 of bing picked.

Assume for definiteness that the top of the picked card is red. Let T_r denote the event that the top of picked car shows red and B_r denote the event that the bottom of the card is also red. We want to compute

$$\Pr(B_r \mid T_r) = \frac{\Pr(T_r \cap B_r)}{\Pr(T_r)}.$$
(1)

Note that

$$\Pr(T_r \cap B_r) = \frac{1}{3},\tag{2}$$

since there is only one card for which both sides are red.

In order to compute $Pr(T_r)$ observe that there are three equally likely choices out of six for the top of the card to show red; thus,

$$\Pr(T_r) = \frac{1}{2}.\tag{3}$$

Hence, using (2) and (3), we obtain from (1) that

$$\Pr(B_r \mid T_r) = \frac{2}{3}.\tag{4}$$

Similar calculations can be used to show that

$$\Pr(T_w) = \frac{1}{2},\tag{5}$$

and

$$\Pr(B_w \mid T_w) = \frac{2}{3}.\tag{6}$$

Let E denote the event that a card showing a given color on the top side will have the same color on the bottom side. Then, by the law of total probability,

$$\Pr(E) = \Pr(T_r) \cdot \Pr(B_r \mid T_r) + \Pr(T_w) \cdot \Pr(B_w \mid T_w), \tag{7}$$

Math 151. Rumbos

so that, using (2), (4), (5) and (6), we obtain from (7) that

$$\Pr(E) = \frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{3}.$$

- 2. Suppose that $0 < \rho < 1$ and let $p(n) = \rho^n (1 \rho)$ for n = 0, 1, 2, 3, ...
 - (a) Verify that p is the probability mass function (pmf) for a random variable. **Solution**: Compute

$$\sum_{n=0}^{\infty} \rho^n (1-\rho) = (1-\rho) \sum_{n=0}^{\infty} \rho^n = (1-\rho) \cdot \frac{1}{1-\rho} = 1,$$

since $0 < \rho < 1$ and, therefore, the geometric series $\sum_{n=0}^{\infty} \rho^n$ converges to $\frac{1}{1-\rho}$.

(b) Let X denote a discrete random variable with pmf p. Compute $P_X(X > 1)$. Solution: Compute

$$\begin{array}{rcl} P_{X}(X>1) &=& 1-P_{X}(X\leqslant 1)\\ \\ &=& 1-p(0)-p(1)\\ \\ &=& 1-(1-\rho)-\rho(1-\rho)\\ \\ &=& \rho^{2}. \end{array}$$

3. If the pdf of a random variable X is

$$f(x) = \begin{cases} 2xe^{-x^2}, & x > 0; \\ 0, & x \le 0 \end{cases}$$
(8)

Find the pdf of $Y = X^2$.

Solution: First, compute the cdf of Y:

$$\begin{array}{lll} F_{_Y}(y) &=& \Pr(Y\leqslant y), & \quad \mbox{for } y>0, \\ &=& \Pr(X^2\leqslant y) \\ &=& \Pr(|X|\leqslant \sqrt{y}) \\ &=& \Pr(-\sqrt{y}\leqslant X\leqslant \sqrt{y}), \end{array}$$

so that

$$F_{Y}(y) = \Pr(-\sqrt{y} < X \le \sqrt{y}), \quad \text{for } y > 0.$$
(9)

since X is a continuous random variable.

It follows from (9) and the definition of the cdf of X that

$$F_{Y}(y) = F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y}), \quad \text{for } y > 0.$$
 (10)

Differentiating F_{y} in (10) with respect to y yields

$$f_{Y}(y) = f(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} + f(-\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}, \quad \text{for } y > 0,$$
 (11)

where we have applied the Chain Rule and f is given in (8). It follows from (11) and the definition of f in (8) that

$$f_{\scriptscriptstyle Y}(y) = \begin{cases} e^{-y}, & \text{ for } y > 0; \\ 0, & \text{ for } y \leqslant 0, \end{cases}$$

so that Y has an Exponential(1) distribution.

- 4. Let N(t) denote the number of mutations in a bacterial colony that occur during the interval [0, t). Assume that $N(t) \sim \text{Poisson}(\lambda t)$ where $\lambda > 0$ is a positive parameter.
 - (a) Give an interpretation for λ .

Answer: λ is the average number of mutations per unit of time.

(b) Let T_1 denote the time that the first mutation occurs. Find the distribution of T_1 .

Solution: Observe that, for t > 0, the event $[T_1 > t]$ is the same as the event [N(t) = 0]; that is, if $t < T_1$, there have have been mutations in the time interval [0, t]. Consequently,

$$\Pr[T_1 > t] = \Pr[N(t) = 0] = e^{-\lambda t},$$

since $N(t) \sim \text{Poisson}(\lambda t)$. Thus,

$$\Pr[T_1 \leq t] = 1 - \Pr[T_1 > t] = 1 - e^{-\lambda t}, \quad \text{for } t > 0.$$

We then have that the cdf of T_1 is

$$F_{{}_{T_1}}(t) = \begin{cases} 1 - e^{-\lambda t}, & \text{for } t > 0; \\ 0 & \text{for } t \leqslant 0. \end{cases}$$
(12)

It follows from (12) that the pdf for T_1 is

$$f_{\scriptscriptstyle T_1}(t) = \begin{cases} \lambda e^{-\lambda t}, & \text{ for } t > 0; \\ 0 & \text{ for } t \leqslant 0, \end{cases}$$

which is the pdf for an exponential distribution with parameter $\beta = 1/\lambda$; thus, $T_1 \sim \text{Exponential}(1/\lambda).$

$$T_1 \sim \text{Exponential}(1/\lambda).$$

- 5. Two checkers at a service station complete checkouts independent of one another in times $T_1 \sim \text{Exponential}(\mu_1)$ and $T_2 \sim \text{Exponential}(\mu_2)$, respectively. That is, one checker serves $1/\mu_1$ customers per unit time on average, while the other serves $1/\mu_2$ customers per unit time on average.
 - (a) Give the joint pdf, $f_{T_1,T_2}(t_1,t_2)$, of T_1 and T_2 . **Solution:** Since T_1 and T_2 are independent random variables, the joint pdf of (T_1,T_2) is given by

$$f_{(T_1,T_2)}(x,y) = f_{T_1}(x) \cdot f_{T_1}(y), \quad \text{for } (x,y) \in \mathbb{R}^2,$$
(13)

where

$$f_{T_1}(x) = \begin{cases} \frac{1}{\mu_1} e^{-x/\mu_1}, & \text{for } x > 0; \\ 0 & \text{for } x \le 0, \end{cases}$$
(14)

and

$$f_{\tau_2}(y) = \begin{cases} \frac{1}{\mu_2} e^{-y/\mu_2}, & \text{for } y > 0; \\ 0 & \text{for } y \leqslant 0. \end{cases}$$
(15)

It follows from (13), (13) and (15) that the joint pdf of (T_1, T_2) is

$$f_{(T_1,T_2)}(t_1,t_2) = \begin{cases} \frac{1}{\mu_1\mu_2} \ e^{-t_1/\mu_1 - t_2/\mu_2}, & \text{for } t_1 > 0 \text{ and } t_2 > 0; \\ \\ 0 & \text{elsewhere.} \end{cases}$$

(b) Define the minimum service time, T_m , to be $T_m = \min\{T_1, T_2\}$. Determine the type of distribution that T_m has and give its pdf, $f_{T_m}(t)$. **Solution:** Observe that, for t > 0, the event $[T_m > t]$ is the same as the

event $[T_1 > t, T_2 > t]$, since T_m is the smallest of T_1 and T_2 . Consequently,

$$\Pr[T_m > t] = \Pr[T_1 > t, T_2 > t].$$
(16)

Thus, by the independence of T_1 and T_2 , it follows from (16) that

$$\Pr[T_m > t] = \Pr[T_1 > t] \cdot \Pr[T_2 > t], \qquad (17)$$

where

$$\Pr[T_i > t] = 1 - F_{T_i}(t) = 1 - (1 - e^{-t/\mu_i}),$$

so that

$$\Pr[T_1 > t] = e^{-t/\mu_i}, \quad \text{for } t > 0 \text{ and } i = 1, 2.$$
 (18)

Combining (17) and (18) then yields

$$\Pr[T_m > t] = e^{-t/mu_1 - t/\mu_2},$$

or

$$\Pr[T_m > t] = e^{-t/\beta},\tag{19}$$

where we have set

$$\frac{1}{\beta} = \frac{1}{\mu_1} + \frac{1}{\mu_2}.$$
 (20)

It follows from (19) that the cdf of T_m is

$$F_{T_m}(t) = \begin{cases} 1 - e^{-t/\beta}, & \text{for } t > 0; \\ 0 & \text{for } t \leqslant 0, \end{cases}$$

where β is given by (20). Thus, the pdf for T_m is

$$f_{T_m}(t) = \begin{cases} \frac{1}{\beta} e^{-t/\beta}, & \text{for } t > 0; \\ 0 & \text{for } t \leqslant 0, \end{cases}$$
(21)

Math 151. Rumbos

which is the pdf for an exponential distribution with parameter β given by (20); thus,

$$T_m \sim \text{Exponential}(\beta), \quad \text{where } \beta = \frac{\mu_1 \mu_2}{\mu_1 + \mu_2}.$$
 (22)

- (c) Suppose that, on average, one of the checkers serves 4 customers in an hour, and the other serves 6 customers per hour. On average, what is the minimum amount of time that a customer will spend being served at the service station?

Solution: We compute the expected value of T_m , where T_m has pdf given in (21) with

$$\beta = \frac{\frac{1}{4} \cdot \frac{1}{6}}{\frac{1}{4} + \frac{1}{6}} = \frac{1}{10},$$

in view of (22). Thus, on average, the minimum time spent by a customer being served at the service station is one tenth of an hour, or 6 minutes. \Box