Solutions to Review Problems for Final Exam

1. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card in red on one side and white on the other side. A card is picked at random and placed on a table. Compute the probability that if a given color is shown on top, the color on the other side is the same as that of the top.
Solution: Each card has a likelihood of $1 / 3$ of bing picked.
Assume for definiteness that the top of the picked card is red. Let T_{r} denote the event that the top of picked car shows red and B_{r} denote the event that the bottom of the card is also red. We want to compute

$$
\begin{equation*}
\operatorname{Pr}\left(B_{r} \mid T_{r}\right)=\frac{\operatorname{Pr}\left(T_{r} \cap B_{r}\right)}{\operatorname{Pr}\left(T_{r}\right)} \tag{1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{Pr}\left(T_{r} \cap B_{r}\right)=\frac{1}{3} \tag{2}
\end{equation*}
$$

since there is only one card for which both sides are red.
In order to compute $\operatorname{Pr}\left(T_{r}\right)$ observe that there are three equally likely choices out of six for the top of the card to show red; thus,

$$
\begin{equation*}
\operatorname{Pr}\left(T_{r}\right)=\frac{1}{2} \tag{3}
\end{equation*}
$$

Hence, using (2) and (3), we obtain from (1) that

$$
\begin{equation*}
\operatorname{Pr}\left(B_{r} \mid T_{r}\right)=\frac{2}{3} \tag{4}
\end{equation*}
$$

Similar calculations can be used to show that

$$
\begin{equation*}
\operatorname{Pr}\left(T_{w}\right)=\frac{1}{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left(B_{w} \mid T_{w}\right)=\frac{2}{3} \tag{6}
\end{equation*}
$$

Let E denote the event that a card showing a given color on the top side will have the same color on the bottom side. Then, by the law of total probability,

$$
\begin{equation*}
\operatorname{Pr}(E)=\operatorname{Pr}\left(T_{r}\right) \cdot \operatorname{Pr}\left(B_{r} \mid T_{r}\right)+\operatorname{Pr}\left(T_{w}\right) \cdot \operatorname{Pr}\left(B_{w} \mid T_{w}\right) \tag{7}
\end{equation*}
$$

so that, using (2), (4), (5) and (6), we obtain from (7) that

$$
\operatorname{Pr}(E)=\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{2}{3}=\frac{2}{3} .
$$

2. Suppose that $0<\rho<1$ and let $p(n)=\rho^{n}(1-\rho)$ for $n=0,1,2,3, \ldots$
(a) Verify that p is the probability mass function (pmf) for a random variable.

Solution: Compute

$$
\sum_{n=0}^{\infty} \rho^{n}(1-\rho)=(1-\rho) \sum_{n=0}^{\infty} \rho^{n}=(1-\rho) \cdot \frac{1}{1-\rho}=1
$$

since $0<\rho<1$ and, therefore, the geometric series $\sum_{n=0}^{\infty} \rho^{n}$ converges to $\frac{1}{1-\rho}$.
(b) Let X denote a discrete random variable with pmf p. Compute $P_{X}(X>1)$.

Solution: Compute

$$
\begin{aligned}
P_{X}(X>1) & =1-P_{X}(X \leqslant 1) \\
& =1-p(0)-p(1) \\
& =1-(1-\rho)-\rho(1-\rho) \\
& =\rho^{2} .
\end{aligned}
$$

3. If the pdf of a random variable X is

$$
f(x)= \begin{cases}2 x e^{-x^{2}}, & x>0 \tag{8}\\ 0, & x \leq 0\end{cases}
$$

Find the pdf of $Y=X^{2}$.

Solution: First, compute the cdf of Y :

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leqslant y), \quad \text { for } y>0 \\
& =\operatorname{Pr}\left(X^{2} \leqslant y\right) \\
& =\operatorname{Pr}(|X| \leqslant \sqrt{y}) \\
& =\operatorname{Pr}(-\sqrt{y} \leqslant X \leqslant \sqrt{y})
\end{aligned}
$$

so that

$$
\begin{equation*}
F_{Y}(y)=\operatorname{Pr}(-\sqrt{y}<X \leqslant \sqrt{y}), \quad \text { for } y>0 \tag{9}
\end{equation*}
$$

since X is a continuous random variable.
It follows from (9) and the definition of the cdf of X that

$$
\begin{equation*}
F_{Y}(y)=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}), \quad \text { for } y>0 \tag{10}
\end{equation*}
$$

Differentiating F_{Y} in (10) with respect to y yields

$$
\begin{equation*}
f_{Y}(y)=f(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}+f(-\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}, \quad \text { for } y>0 \tag{11}
\end{equation*}
$$

where we have applied the Chain Rule and f is given in (8). It follows from (11) and the definition of f in (8) that

$$
f_{Y}(y)= \begin{cases}e^{-y}, & \text { for } y>0 \\ 0, & \text { for } y \leqslant 0\end{cases}
$$

so that Y has an Exponential(1) distribution.
4. Let $N(t)$ denote the number of mutations in a bacterial colony that occur during the interval $[0, t)$. Assume that $N(t) \sim \operatorname{Poisson}(\lambda t)$ where $\lambda>0$ is a positive parameter.
(a) Give an interpretation for λ.

Answer: λ is the average number of mutations per unit of time.
(b) Let T_{1} denote the time that the first mutation occurs. Find the distribution of T_{1}.
Solution: Observe that, for $t>0$, the event $\left[T_{1}>t\right]$ is the same as the event $[N(t)=0]$; that is, if $t<T_{1}$, there have have been mutations in the time interval $[0, t]$. Consequently,

$$
\operatorname{Pr}\left[T_{1}>t\right]=\operatorname{Pr}[N(t)=0]=e^{-\lambda t}
$$

since $N(t) \sim \operatorname{Poisson}(\lambda t)$. Thus,

$$
\operatorname{Pr}\left[T_{1} \leqslant t\right]=1-\operatorname{Pr}\left[T_{1}>t\right]=1-e^{-\lambda t}, \quad \text { for } t>0
$$

We then have that the cdf of T_{1} is

$$
F_{T_{1}}(t)= \begin{cases}1-e^{-\lambda t}, & \text { for } t>0 \tag{12}\\ 0 & \text { for } t \leqslant 0\end{cases}
$$

It follows from (12) that the pdf for T_{1} is

$$
f_{T_{1}}(t)= \begin{cases}\lambda e^{-\lambda t}, & \text { for } t>0 \\ 0 & \text { for } t \leqslant 0\end{cases}
$$

which is the pdf for an exponential distribution with parameter $\beta=1 / \lambda$; thus,

$$
T_{1} \sim \operatorname{Exponential}(1 / \lambda)
$$

5. Two checkers at a service station complete checkouts independent of one another in times $T_{1} \sim \operatorname{Exponential}\left(\mu_{1}\right)$ and $T_{2} \sim \operatorname{Exponential}\left(\mu_{2}\right)$, respectively. That is, one checker serves $1 / \mu_{1}$ customers per unit time on average, while the other serves $1 / \mu_{2}$ customers per unit time on average.
(a) Give the joint pdf, $f_{T_{1}, T_{2}}\left(t_{1}, t_{2}\right)$, of T_{1} and T_{2}.

Solution: Since T_{1} and T_{2} are independent random variables, the joint pdf of $\left(T_{1}, T_{2}\right)$ is given by

$$
\begin{equation*}
f_{\left(T_{1}, T_{2}\right)}(x, y)=f_{T_{1}}(x) \cdot f_{T_{1}}(y), \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{13}
\end{equation*}
$$

where

$$
f_{T_{1}}(x)= \begin{cases}\frac{1}{\mu_{1}} e^{-x / \mu_{1}}, & \text { for } x>0 \tag{14}\\ 0 & \text { for } x \leqslant 0\end{cases}
$$

and

$$
f_{T_{2}}(y)= \begin{cases}\frac{1}{\mu_{2}} e^{-y / \mu_{2}}, & \text { for } y>0 \tag{15}\\ 0 & \text { for } y \leqslant 0\end{cases}
$$

It follows from (13), (13) and (15) that the joint pdf of $\left(T_{1}, T_{2}\right)$ is

$$
f_{\left(T_{1}, T_{2}\right)}\left(t_{1}, t_{2}\right)= \begin{cases}\frac{1}{\mu_{1} \mu_{2}} e^{-t_{1} / \mu_{1}-t_{2} / \mu_{2}}, & \text { for } t_{1}>0 \text { and } t_{2}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

(b) Define the minimum service time, T_{m}, to be $T_{m}=\min \left\{T_{1}, T_{2}\right\}$. Determine the type of distribution that T_{m} has and give its pdf, $f_{T_{m}}(t)$.
Solution: Observe that, for $t>0$, the event $\left[T_{m}>t\right]$ is the same as the event $\left[T_{1}>t, T_{2}>t\right]$, since T_{m} is the smallest of T_{1} and T_{2}. Consequently,

$$
\begin{equation*}
\operatorname{Pr}\left[T_{m}>t\right]=\operatorname{Pr}\left[T_{1}>t, T_{2}>t\right] \tag{16}
\end{equation*}
$$

Thus, by the independence of T_{1} and T_{2}, it follows from (16) that

$$
\begin{equation*}
\operatorname{Pr}\left[T_{m}>t\right]=\operatorname{Pr}\left[T_{1}>t\right] \cdot \operatorname{Pr}\left[T_{2}>t\right] \tag{17}
\end{equation*}
$$

where

$$
\operatorname{Pr}\left[T_{i}>t\right]=1-F_{T_{i}}(t)=1-\left(1-e^{-t / \mu_{i}}\right)
$$

so that

$$
\begin{equation*}
\operatorname{Pr}\left[T_{1}>t\right]=e^{-t / \mu_{i}}, \quad \text { for } t>0 \text { and } i=1,2 . \tag{18}
\end{equation*}
$$

Combining (17) and (18) then yields

$$
\operatorname{Pr}\left[T_{m}>t\right]=e^{-t / m u_{1}-t / \mu_{2}}
$$

or

$$
\begin{equation*}
\operatorname{Pr}\left[T_{m}>t\right]=e^{-t / \beta} \tag{19}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
\frac{1}{\beta}=\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}} . \tag{20}
\end{equation*}
$$

It follows from (19) that the cdf of T_{m} is

$$
F_{T_{m}}(t)= \begin{cases}1-e^{-t / \beta}, & \text { for } t>0 \\ 0 & \text { for } t \leqslant 0\end{cases}
$$

where β is given by (20). Thus, the pdf for T_{m} is

$$
f_{T_{m}}(t)= \begin{cases}\frac{1}{\beta} e^{-t / \beta}, & \text { for } t>0 \tag{21}\\ 0 & \text { for } t \leqslant 0\end{cases}
$$

which is the pdf for an exponential distribution with parameter β given by (20); thus,

$$
\begin{equation*}
T_{m} \sim \operatorname{Exponential}(\beta), \quad \text { where } \beta=\frac{\mu_{1} \mu_{2}}{\mu_{1}+\mu_{2}} \tag{22}
\end{equation*}
$$

(c) Suppose that, on average, one of the checkers serves 4 customers in an hour, and the other serves 6 customers per hour. On average, what is the minimum amount of time that a customer will spend being served at the service station?
Solution: We compute the expected value of T_{m}, where T_{m} has pdf given in (21) with

$$
\beta=\frac{\frac{1}{4} \cdot \frac{1}{6}}{\frac{1}{4}+\frac{1}{6}}=\frac{1}{10},
$$

in view of (22). Thus, on average, the minimum time spent by a customer being served at the service station is one tenth of an hour, or 6 minutes.

