Assignment \#5

Due on Friday, February 10, 2012
Read Section 3.1 on Modeling Traffic Flow in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Background

In this problem set we consider heat flow in a metal rod. Assume the length of the rod is L and lies along the x-axis with one end at $x=0$ and the other end at $x=L$. Postulate a temperature function $u(x, t)$ which measures the temperature in the cross section of the rod at x and at time t. Let $\rho(x, t)$ denote the density of the rod in units of mass per volume of the material composing the rod. We also postulate a specific heat function, $c(x, t)$, which measures the heat energy that needs to be supplied to a unit of mass of material to raise its temperature by one unit of temperature. Assume that c is constant and that the cross sectional are of the rod, A, is also constant.

Do the following problems.

1. Give a formula for computing the heat energy, $Q(t)$, contained in the rod in the section between $x=a$ and $x=b$.
2. State a conservation principle that applies to the amount of heat energy in the $[a, b]$ section, assuming that there are no sources of heat in that section.
3. Postulate a heat flux function, $F(x, t)$, which measures the amount of heat energy that flows across a unit of cross sectional area per unit time in the positive x-direction. Re-state the conservation principle in Problem 2 in terms of the heat flux function.
Assume that the sides of the cylindrical rod are insulated, so that heat can only enter or leave the $[a, b]$ section of the rod through the end sections at a and b.
4. Use the following empirical constitutive equation that relates heat flux to temperature gradient along the rod,

$$
F(x, t)=-\kappa \frac{\partial u}{\partial x}(x, t)
$$

where κ is a positive proportionality constant known as the heat conductivity of the material, to re-state the conservation principle obtained in Problem 3.
5. Assuming that ρ and c are constant and that u has continuous partial derivatives up to order 2, derive the partial differential equation

$$
c \rho \frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left(\kappa \frac{\partial u}{\partial x}\right)=0 .
$$

