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Solutions to Review Problems for Exam #1

1. Modeling the Spread of a Disease. In a simple model for a disease that
is spread through infections transmitted between individuals in a population,
the population is divided into three compartments pictured in Figure 1. The

- -S(t) I(t) R(t)

Figure 1: SIR Compartments

first compartment, S(t), denotes the set of individuals in a population that are
susceptible to acquiring the disease; the second compartment, I(t), denotes the
set of infected individual who can also infect others; and the third compartment,
R(t), denotes the set of individuals who had the disease and who have recovered
from it; they can no longer get infected.

Assume that the total number of individuals in the population,

N = S(t) + I(t) +R(t),

is constant. Susceptible individuals can get infected by contact with infectious
individuals and move to the infected class. This is indicated by the arrow going
from the S(t) compartment to the I(t) compartment.

The rate at which susceptible individuals get infected is proportional to product
of number of susceptible individuals and the number of infected individuals
with constant of proportionality β > 0. The rate at which infected individuals
recover is proportional to the number of infected individuals with constant of
proportionality γ > 0. What are the units for β and γ?

Use conservation principles to derive a system of differential equations for the
functions S, I and R, assuming that they are differentiable. Models of this type
were first studied by Kermack and McKendrick in the early 1930s.

Introduce dimensionless variables

ŝ(t) =
S(t)

N
, î(t) =

I(t)

N
, r̂(t) =

R(t)

N
, and t̂ =

t

τ
, (1)
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for some scaling factor, τ , in units of time, in order to write the system in
dimensionless form.

Solution: Using conservation principles on each of the compartments, we ob-
tain the system of ordinary differential equations

dS

dt
= −βSI;

dI

dt
= βSI − γI;

dR

dt
= γI.

(2)

It follows from the equations in (2) that β has units of 1/[time × individual],
while γ has units of 1/time.

Next, use the change of variables in (1) and the Chain Rule to obtain from the
first equation in (2) that

dŝ

dt̂
=

dŝ

dt
· dt
dt̂

=
τ

N

dS

dt

= − τ

N
βSI,

so that, using (1) again,
dŝ

dt̂
= −βτN ŝ î. (3)

Similar calculations for the second equation in (2) yield

d̂i

dt̂
= βτN ŝ î− γτ î; (4)

and, for the third equation in (4),

dr̂

dt̂
= γτ î. (5)

Define the dimensionless parameter

βτN = Ro, (6)
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and set
γτ = 1,

so tat

τ =
1

γ
, (7)

and

Ro =
βN

γ
, (8)

by virtue of (6).

Next, substitute (6) and (7) into the equations in (3), (4) and (5) to obtain the
dimensionless system 

dŝ

dt̂
= −Ro ŝ î;

d̂i

dt̂
= Ro ŝ î− î;

dr̂

dt̂
= î.

(9)

If we stipulate from the outset that t is measured in units of 1/γ and s, i and
r are measures in fractions of the total population, N , then the system in (9)
can be written in simpler form as

ds

dt
= −Rosi;

di

dt
= Rosi− i;

dr

dt
= i,

which depends on the single dimensionless parameter, Ro, given in (8). �

2. Modeling Traffic Flow. Consider the initial value problem
∂u

∂t
+ g′(u)

∂u

∂x
= 0;

u(x, 0) = f(x),

(10)
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where
g(u) = u(1− u), (11)

and the initial condition f is given by

f(x) =


1, if x < −1;

1

2
(1− x), if − 1 6 x < 1;

0, if x > 1.

(12)

(a) Sketch the characteristic curves of the partial differential equation.

Solution: The equation for the characteristic curves is given by

dx

dt
= g′(u). (13)

On characteristic curves, a solution, u, to the partial differential equation
in (10) satisfies the ordinary differential equation

du

dt
= 0,

which shows that u is constant along characteristic curves. We write

u(x, t) = ϕ(k), (14)

where ϕ(k) is the constant value of u on the characteristic indexed by k.

Using the value for u in (14), the equation for the characteristic curves in
(13) can be re–written as

dx

dt
= g′(ϕ(k)). (15)

Solving the differential equation in (15) yields the equation for the char-
acteristic curves

x = g′(ϕ(k))t+ k, (16)

where the parameter k corresponds to the value on the x–axis on which
the characteristic curves meet the x–axis.

Next, solve for k in (16) and substitute into (14) to obtain the expression

u(x, t) = ϕ(x− g′(u(x, t))t), (17)

which gives a solution of the partial differential equation in (10) implicitly.
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Using the initial condition in (10), we obtain from (17) that

ϕ(x) = f(x), for all x ∈ R,

so that (17) can now be re–written as

u(x, t) = f(x− g′(u(x, t))t). (18)

Accordingly, the equation for the characteristic curves in (16) can now be
re–written as

x = g′(f(k))t+ k, (19)

so that the characteristic curves will be straight lines in the xt–plane of
slope 1/g′(f(k)) going through (k, 0) for k ∈ R, where g′(u) is obtained
from (11) as

g′(u) = 1− 2u. (20)

For instance, using (20), (12) and (19) we get that the equations for the
characteristic curves for k 6 −1 are given by

x = −t+ k, for k 6 −1. (21)

The curves described by (21) are straight lines with slope −1 going through
(k, 0), for k 6 −1. Some of these are pictured in Figure 2. Similarly, for
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Figure 2: Characteristic Curves for Problem (10)

k > 1, the curves in (19) have equations

x = t+ k, for k > 1,
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which are straight lines of slope 1 going through (k, 0), for k > 1; some of
these lines are also sketched in Figure 2.

For values of k between −1 and 1, the slopes of the lines in (19) are
given by 1/g′(f(k)), where f(k) ranges from 1 at k = −1, to 0 at k = 1;
so, according to (20), the slopes of the lines are negative and increase in
absolute value to infty as k approaches 0. At k = 0, f(k) = 1/2, so
that g′(f(k)) = 0, by virtue of (20), so that the characteristic curve will
be x = 0, according to (19), or the t–axis. As k ranges from 0 to 1, the
characteristic curves fan out from the t–axis to the line x = t + 1. A few
of these curves are shown in Figure 2. �

(b) Explain how the initial value problem can be solved in this case, and give
a formula for u(x, t).

Solution: Since the characteristic curves do not intersect for t > 0, the
initial value problem in (10) can always be solved by traveling back along
the characteristic curves until the hit the x–axis at a point (k, 0), and then
reading the value of the initial density, u(k, 0) = f(k), at that point. For
example, if the point (x, t) lies in the region x < −t − 1, we see from
Figure 2 that the characteristic curve containing the point (x, t) will meet
the x–axis at some point (k, 0) with k < −1; since, f(k) = 1 for k < −1,
it follows from (18) that

u(x, t) = 1, for x < −t− 1, and t > 0. (22)

Similarly, if x > x + t, then the characteristic curve containing (x, t) will
meet the x–axis at some point (k, 0) with k > 1; since f(k) = 0 for k > 1,
it follows from (18) that

u(x, t) = 0, for x > t+ 1, and t > 0. (23)

For (x, t) lying in the region between the lines x = −t−1 and x = t+1, the
characteristic curve containing the point will meet the x–axis at a point

(k, 0) with −1 6 k 6 1. Since f(k) =
1

2
(1 − k) for those values of k, by

(12), it follows from (18) that

u(x, t) =
1

2
[1− (x− g′(u(x, t))t)], for − t− 1 6 x 6 t+ 1. (24)

Using (20), we can re–write (24) as

u(x, t) =
1− x+ t

2
− u(x, t)t, for − t− 1 6 x 6 t+ 1. (25)
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Solving for u(x, t) in (25) yields

u(x, t) =
1− x+ t

2(1 + t)
, for − t− 1 6 x 6 t+ 1. (26)

Finally, putting together the results in (22), (23) and (26), we obtain the
following formula for u(x, t):

u(x, t) =


1, for x < −t− 1;
1− x+ t

2(1 + t)
, for − t− 1 6 x 6 t+ 1;

0, for x > t+ 1,

for t > 0. �

3. Age Structured Population Models. Postulate a population density, n(a, t),
which also gives the age distribution for individuals in the population; so that,
the number of individuals in the population between the ages a1 and a2 at time

t is given by

∫ a2

a1

n(a, t) da.

(a) Explain why n(a, t) is given in units of population divided by units of time.

Solution: Since n(a, t)∆a gives, approximately, the number of individuals
in the population with ages between a and a + ∆a, and a is measured in
chronological time, it follows that the units of n are individuals in the
population per unit time. �

(b) Since a is a function of t, assuming that n is C1, we can use Chain Rule

to compute the rate of change of population density at time t,
dn

dt
.

Explain why
dn

dt
=
∂n

∂t
+
∂n

∂a
. (27)

Solution: Applying the Chain Rule we obtain

dn

dt
=
∂n

∂t
· dt
dt

+
∂n

∂a
· da
dt
. (28)

Since the age, a, of individuals in the population is measured in chrono-
logical time, it follows that

da

dt
= 1. (29)

The equation in (27) follows from (28) and (29). �
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(c) Assume that death rate for individuals of age a in the population is pro-
portional to the number of individuals at that age with constant of pro-
portionality µ(a).

Use a conservation principle to derive the following partial differential
equation

∂n

∂t
+
∂n

∂a
= −µ(a)n (30)

Give the characteristic curves for the equation.

Solution: At any given age, a, the conservation principle implies that

dn

dt
= Rate of n in − Rate of n out. (31)

Since contributions from births only occur at age a = 0, we have that, for
a > 0,

Rate of n in = 0, (32)

and
Rate of n out = µ(a)n. (33)

Combining the equations (31), (32) and (33) yields the partial differential
equation in (30).

The equation for the characteristic curves of (30) is

da

dt
= 1. (34)

Solving the differential equation in (34) yields the equation for the char-
acteristic curves,

a = t+ k. (35)

Thus, the characteristic curves are straight lines of slope 1. �

(d) Give solutions to the partial differential equation derived in the previous
part assuming that the death rate is zero for all ages. Interpret your result.

Solution: Assuming that µ(a) = 0, the differential equation in (30)

∂n

∂t
+
∂n

∂a
= 0. (36)

Then, along characteristic curves, n satisfies the ordinary differential equa-
tion

dn

dt
= 0. (37)
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It follows from (37) that n is constant along characteristic curves, so that

n(a, t) = ϕ(k), (38)

where ϕ(k) is the constant value of n along the characteristic curve in (35)
indexed by k.

Solving for k in (35) and substituting into (38) yields

n(a, t) = ϕ(a− t),

so that solutions to (36) are traveling waves with speed 1. The initial
population distribution simply moves forward in time. �


