## Review Problems for Exam 2

1. Poisson Processes and Random Mutations. It was shown in class and in the lecture notes that, if $M(t)$ denotes the number of mutations that occur in a bacterial colony in the time interval $[0, t]$, then $M(t)$ can be modeled by a Poisson process; in other words, for each $t>0, M(t)$ is a modeled by a Poisson random variable with parameter $\lambda t$, where the parameter $\lambda$ denotes the (constant) average number of mutations per unit time. Hence,

$$
\operatorname{Pr}[M(t)=m]= \begin{cases}\frac{(\lambda t)^{m}}{m!} e^{-\lambda t}, & \text { for } m=0,1,2,3, \ldots \text { and } t \geqslant 0 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Let $T_{1}$ denote the time of occurrence of the first mutation. Give the probability density function for $T_{1}$ and compute its expected value.
(b) Compute the limits $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[M(t)=1]}{t}$ and $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[M(t) \geqslant 2]}{t}$ and give interpretations to your results.
(c) For each real pair of real numbers, $t_{1}$ and $t_{2}$, with $t_{1}<t_{2}$, define $Y=$ $M\left(t_{2}\right)-M\left(t_{1}\right)$. Compute the expected value, $E(Y)$, of $Y$, and give and interpretation for your result.
2. Random Walk on the Integers. A particle starts at $x=0$ and, after one unit of time, it moves one unit to the right with probability $p$, for $0<p<1$, or to the left with probability $1-p$. Assume that at each time step, whether a particle will move to the right or to the left is independent of where it has been.
(a) Let $X_{1}$ denote the position of the particle after one unit of time and $X_{2}$ denote that after 2 units of time. Give the probability distributions for $X_{1}$ and $X_{2}$ and compute their expectations and variances.
(b) Let $X_{3}$ denote the position of the particle in the previous part after 3 units of time. Give probability distribution, expectation and variance of $X_{3}$. Generalize this result to $X_{n}$, the position of the particle after $n$ units of time. The set of random variables $\left\{X_{n} \mid n=0,1,2,3, \ldots\right\}$ is an example of a discrete-time random process
3. Exponential Distributions. A continuous random variable, $T$, is said to have and exponential distribution with parameter $\beta>0$, if its probability density function, $f_{T}$, is given by

$$
f_{T}(t) \begin{cases}\frac{1}{\beta} e^{-t / \beta} & \text { for } t \geqslant 0 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Compute the conditional probability

$$
\operatorname{Pr}(T>t+s \mid T>t)
$$

for all $t, s>0$.
Give and interpretation to your result.
(b) Survival Time After a Treatment. In Problem 5 of Assignment \#9 you showed that the survival time, $T$, after a treatment can be modeled by an exponential random variable with parameter $\beta$, where $\beta$ is the expected time of survival.
The survival function, $S(t)$, is the probability that a randomly selected person will survive for at least $t$ years after receiving treatment. Compute $S(t)$.
Suppose that a patient has a $70 \%$ probability of surviving at least two years. Estimate the expected survival time of the treatment.

