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Solutions to Review Problems for Exam #2

1. Poisson Processes and Random Mutations. It was shown in class and
in the lecture notes that, if M(t) denotes the number of mutations that occur
in a bacterial colony in the time interval [0, t], then M(t) can be modeled by
a Poisson process; in other words, for each t > 0, M(t) is a modeled by a
Poisson random variable with parameter λt, where the parameter λ denotes the
(constant) average number of mutations per unit time. Hence,

Pr[M(t) = m] =


(λt)m

m!
e−λt, for m = 0, 1, 2, 3, . . . and t > 0;

0 elsewhere.
(1)

(a) Let T1 denote the time of occurrence of the first mutation. Give the prob-
ability density function for T1 and compute its expected value.

Solution: First, note that

Pr(T1 > t) = Pr[M(t) = 0]; (2)

since t < T1 if and only if there are no mutations in [0, t].

It follows from (2) and (1) with m = 0 that

Pr(T1 > t) = e−λt,

so that
Pr(T1 6 t) = 1− e−λt, for t > 0. (3)

We conclude from (3) that T1 has cdf given by

F
T1

(t) =

{
1− e−λt, for t > 0;

0 for t 6 0.
(4)

Differentiating F
T1

(t) with respect to t, for t 6= 0 in (4), yields the pdf

f
T1

(t) =

{
λe−λt, for t > 0;

0 for t 6 0,

so that T1 has an exponential distribution with parameter 1/λ. Hence,

E(T1) =
1

λ
.

�
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(b) Compute the limits lim
t→0

Pr[M(t) = 1]

t
and lim

t→0

Pr[M(t) > 2]

t
and give in-

terpretations to your results.

Solution: Use 1 with m = 1 to compute

Pr[M(t) = 1]

t
=
λt e−λt

t
= λe−λt, for t 6= 0,

so that

lim
t→0

Pr[M(t) = 1]

t
= λ. (5)

An interpretation of (5) is that, when t > 0 is very small, the probability
that there will be exactly one mutation in [0, 1] is approximately propor-
tional to t, with constant of proportionality λ.

Next, observe that

Pr[M(t) > 2] = 1− Pr[M(t) 6 1] = 1− Pr[M(t) = 0]− Pr[M(t) = 1],

so that
Pr[M(t) > 2] = 1− e−λt − λt e−λt. (6)

Dividing on both sides of (6) by t 6= 0 we then obtain

Pr[M(t) > 2]

t
=

1− e−λt

t
− λ e−λt. (7)

Note that, by L’Hospital’s Rule,

lim
t→0

1− e−λt

t
= lim

t→0
λe−λt = λ; (8)

so that, combining (7) and (8),

lim
t→0

Pr[M(t) > 2]

t
= 0. (9)

Thus, the probability that there will be two or more mutations in [0, t],
when |t| is very small, is close to 0. �

(c) For each real pair of real numbers, t1 and t2, with t1 < t2, define Y =
M(t2) −M(t1). Compute the expected value, E(Y ), of Y , and give and
interpretation for your result.
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Solution: Compute

E(Y ) = E[M(t2)−M(t1)]

= E[M(t2)]− E[M(t1)]

= λt2 − λt1

= λ(t2 − t1);

so that the expected number of mutations in the interval (t1, t2] is propor-
tional to the length of the interval, t2− t1, with constant of proportionality
λ. �

2. Random Walk on the Integers. A particle starts at x = 0 and, after one
unit of time, it moves one unit to the right with probability p, for 0 < p < 1,
or to the left with probability 1− p. Assume that at each time step, whether a
particle will move to the right or to the left is independent of where it has been.

(a) Let X1 denote the position of the particle after one unit of time and X2

denote that after 2 units of time. Give the probability distributions for X1

and X2 and compute their expectations and variances.

Solution: Let S denote the random variable with values −1 and 1, and
probability distribution function given by

p
S
(x) =

{
1− p if x = −1;

p if x = 1.
(10)

Then, the expected value of S is

E(S) = (−1)(1− p) + (1)p = 2p− 1, (11)

and
Var(S) = E(S2)− [E(S)]2, (12)

where
E(S2) = (−1)2(1− p) + (1)2p = 1. (13)

Next, use (13) and (11) to obtain from (12) that

Var(S) = 1− [2p− 1]2 = 4p(1− p). (14)
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Set X0 = 0, so that X1 = X0 + S. Thus, X1 has the same probability
distribution as that of S; thus, in view of (10), (11) and (13),

p
X1

(x) =

{
1− p if x = −1;

p if x = 1,
(15)

E(X1) = 2p− 1, (16)

and
Var(X1) = 4p(1− p). (17)

Next, observe that
X2 = X1 + S, (18)

and that possible values for X2 are −2, 0, and 2. For those values of X2

we compute

p
X2

(k) = Pr(X1 + S = k)

=
∑
`

Pr(S = `,X1 = k − `)

=
∑
`

Pr(S = `) · Pr(X1 = k − `),

since X1 and S are independent. We then have that

p
X2

(k) = p
S
(−1) · p

X1
(k + 1) + p

S
(1) · p

X1
(k − 1). (19)

Using (10) and (15), we obtain from (19) that

p
X2

(x) =


(1− p)2 if x = −2;

2(1− p)p if x = 0;

p2 if x = 2.

(20)

Finally, use (18) to get

E(X2) = E(X1) + E(S) = 2(2p− 1), (21)

where we have used (11) and (16); and

Var(X2) = Var(X1) + Var(S) = 8p(1− p), (22)

since X1 and S are independent, where we have used (14) and (17). �
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(b) Let X3 denote the position of the particle in the previous part after 3
units of time. Give probability distribution, expectation and variance of
X3. Generalize this result to Xn, the position of the particle after n units
of time. The set of random variables {Xn | n = 0, 1, 2, 3, . . .} is an example
of a discrete–time random process

Solution: Let S and X2 be as defined in part (a), and note that

X3 = X2 + S. (23)

Then, the calculations leading to (19) in part (a) imply that

p
X3

(k) = p
S
(−1) · p

X2
(k + 1) + p

S
(1) · p

X2
(k − 1), (24)

where k = −3,−1, 1, 3. Thus, using (10) and (20), we obtain from (24)
that

p
X3

(x) =


(1− p)3 if x = −3;

3(1− p)2p if x = −1;

3(1− p)p2 if x = 1;

p3 if x = 3.

(25)

Next, use (23), (11), (14), (16), (17) and the independence of X2 and S to
get

E(X3) = 3(2p− 1), (26)

and
Var(X3) = 12p(1− p). (27)

Observe that the probabilities given in (20) and (25) are the ones given
by the Binomial(n, p) distribution for n = 2 and n = 3, respectively. An
inductive argument on n, for

Xn = Xn−1 + S, (28)

will then yield the following probability distribution for Xn

p
Xn

(x) =

(
n

k

)
pk(1− p)n−k, for x = 2k − n, k = 0, 1, . . . , n.

Similarly, using (28), the independence of Xn and S, and induction on n,
we obtain

E(Xn) = n(2p− 1),

and
Var(Xn) = 4np(1− p).

�
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3. Exponential Distributions. A continuous random variable, T , is said to have
and exponential distribution with parameter β > 0, if its probability density
function, f

T
, is given by

f
T
(t)


1

β
e−t/β for t > 0;

0 elsewhere.
(29)

(a) Compute the conditional probability

Pr(T > t+ s | T > t)

for all t, s > 0.

Give and interpretation to your result.

Solution: Compute

Pr(T > t+ s | T > t) = 1− Pr(T 6 t+ s | T > t), (30)

where

Pr(T 6 t+ s | T > t) =
Pr(T 6 t+ s, T > t)

Pr(T > t)
. (31)

Next, use the probability density function in (29) to compute

Pr(T 6 t+ s, T > t) = Pr(t < T 6 t+ s)

=

∫ t+s

t

1

β
e−t/β dt

= e−t/β − e−(t+s)/β,

so that
Pr(T 6 t+ s, T > t) = e−t/β

[
1− e−s/β

]
. (32)

Similarly,

Pr(T > t) =

∫ ∞
t

1

β
e−t/β dt

= lim
b→∞

∫ b

t

1

β
e−t/β dt

= lim
b→∞

[
e−t/β − e−b/β

]
,
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so that
Pr(T > t) = e−t/β. (33)

It then follows from (32), (33) and (31) that

Pr(T 6 t+ s | T > t) =
e−t/β[1− e−s/β]

e−t/β
= 1− e−s/β. (34)

Thus, combining (30) and (34)

Pr(T > t+ s | T > t) = e−s/β, for s > 0. (35)

It follows from (35) that the conditional probability Pr(T > t+ s | T > t)
is independent of t. �

(b) Survival Time After a Treatment. In Problem 5 of Assignment #9
you showed that the survival time, T , after a treatment can be modeled by
an exponential random variable with parameter β, where β is the expected
time of survival.

The survival function, S(t), is the probability that a randomly selected
person will survive for at least t years after receiving treatment. Compute
S(t).

Suppose that a patient has a 70% probability of surviving at least two
years. Estimate the expected survival time of the treatment.

Solution: Note that

S(t) = Pr(T > t) = e−t/β, for t > 0, (36)

where we have used (33).

If we are given that S(2) = 0.7, it follows from (36) that

e−2/β = 0.7 (37)

Solving (37) for β yields

β = − 2

ln(0.7)
=̇ 5.6.

Thus, the expected survival time after treatment is about 5.6 years. �


