Solutions to Review Problems for Exam \#2

1. Poisson Processes and Random Mutations. It was shown in class and in the lecture notes that, if $M(t)$ denotes the number of mutations that occur in a bacterial colony in the time interval $[0, t]$, then $M(t)$ can be modeled by a Poisson process; in other words, for each $t>0, M(t)$ is a modeled by a Poisson random variable with parameter λt, where the parameter λ denotes the (constant) average number of mutations per unit time. Hence,

$$
\operatorname{Pr}[M(t)=m]= \begin{cases}\frac{(\lambda t)^{m}}{m!} e^{-\lambda t}, & \text { for } m=0,1,2,3, \ldots \text { and } t \geqslant 0 \tag{1}\\ 0 & \text { elsewhere }\end{cases}
$$

(a) Let T_{1} denote the time of occurrence of the first mutation. Give the probability density function for T_{1} and compute its expected value.
Solution: First, note that

$$
\begin{equation*}
\operatorname{Pr}\left(T_{1}>t\right)=\operatorname{Pr}[M(t)=0] \tag{2}
\end{equation*}
$$

since $t<T_{1}$ if and only if there are no mutations in $[0, t]$.
It follows from (2) and (1) with $m=0$ that

$$
\operatorname{Pr}\left(T_{1}>t\right)=e^{-\lambda t}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}\left(T_{1} \leqslant t\right)=1-e^{-\lambda t}, \quad \text { for } t>0 \tag{3}
\end{equation*}
$$

We conclude from (3) that T_{1} has cdf given by

$$
F_{T_{1}}(t)= \begin{cases}1-e^{-\lambda t}, & \text { for } t>0 \tag{4}\\ 0 & \text { for } t \leqslant 0\end{cases}
$$

Differentiating $F_{T_{1}}(t)$ with respect to t, for $t \neq 0$ in (4), yields the pdf

$$
f_{T_{1}}(t)= \begin{cases}\lambda e^{-\lambda t}, & \text { for } t>0 \\ 0 & \text { for } t \leqslant 0\end{cases}
$$

so that T_{1} has an exponential distribution with parameter $1 / \lambda$. Hence,

$$
E\left(T_{1}\right)=\frac{1}{\lambda} .
$$

(b) Compute the limits $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[M(t)=1]}{t}$ and $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[M(t) \geqslant 2]}{t}$ and give interpretations to your results.
Solution: Use 1 with $m=1$ to compute

$$
\frac{\operatorname{Pr}[M(t)=1]}{t}=\frac{\lambda t e^{-\lambda t}}{t}=\lambda e^{-\lambda t}, \quad \text { for } t \neq 0
$$

so that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[M(t)=1]}{t}=\lambda \tag{5}
\end{equation*}
$$

An interpretation of (5) is that, when $t>0$ is very small, the probability that there will be exactly one mutation in $[0,1]$ is approximately proportional to t, with constant of proportionality λ.

Next, observe that

$$
\operatorname{Pr}[M(t) \geqslant 2]=1-\operatorname{Pr}[M(t) \leqslant 1]=1-\operatorname{Pr}[M(t)=0]-\operatorname{Pr}[M(t)=1]
$$

so that

$$
\begin{equation*}
\operatorname{Pr}[M(t) \geqslant 2]=1-e^{-\lambda t}-\lambda t e^{-\lambda t} . \tag{6}
\end{equation*}
$$

Dividing on both sides of (6) by $t \neq 0$ we then obtain

$$
\begin{equation*}
\frac{\operatorname{Pr}[M(t) \geqslant 2]}{t}=\frac{1-e^{-\lambda t}}{t}-\lambda e^{-\lambda t} \tag{7}
\end{equation*}
$$

Note that, by L'Hospital's Rule,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1-e^{-\lambda t}}{t}=\lim _{t \rightarrow 0} \lambda e^{-\lambda t}=\lambda \tag{8}
\end{equation*}
$$

so that, combining (7) and (8),

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[M(t) \geqslant 2]}{t}=0 \tag{9}
\end{equation*}
$$

Thus, the probability that there will be two or more mutations in $[0, t]$, when $|t|$ is very small, is close to 0 .
(c) For each real pair of real numbers, t_{1} and t_{2}, with $t_{1}<t_{2}$, define $Y=$ $M\left(t_{2}\right)-M\left(t_{1}\right)$. Compute the expected value, $E(Y)$, of Y, and give and interpretation for your result.

Solution: Compute

$$
\begin{aligned}
E(Y) & =E\left[M\left(t_{2}\right)-M\left(t_{1}\right)\right] \\
& =E\left[M\left(t_{2}\right)\right]-E\left[M\left(t_{1}\right)\right] \\
& =\lambda t_{2}-\lambda t_{1} \\
& =\lambda\left(t_{2}-t_{1}\right)
\end{aligned}
$$

so that the expected number of mutations in the interval $\left(t_{1}, t_{2}\right]$ is proportional to the length of the interval, $t_{2}-t_{1}$, with constant of proportionality λ.
2. Random Walk on the Integers. A particle starts at $x=0$ and, after one unit of time, it moves one unit to the right with probability p, for $0<p<1$, or to the left with probability $1-p$. Assume that at each time step, whether a particle will move to the right or to the left is independent of where it has been.
(a) Let X_{1} denote the position of the particle after one unit of time and X_{2} denote that after 2 units of time. Give the probability distributions for X_{1} and X_{2} and compute their expectations and variances.
Solution: Let S denote the random variable with values -1 and 1, and probability distribution function given by

$$
p_{S}(x)= \begin{cases}1-p & \text { if } x=-1 \tag{10}\\ p & \text { if } x=1\end{cases}
$$

Then, the expected value of S is

$$
\begin{equation*}
E(S)=(-1)(1-p)+(1) p=2 p-1, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}(S)=E\left(S^{2}\right)-[E(S)]^{2} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
E\left(S^{2}\right)=(-1)^{2}(1-p)+(1)^{2} p=1 \tag{13}
\end{equation*}
$$

Next, use (13) and (11) to obtain from (12) that

$$
\begin{equation*}
\operatorname{Var}(S)=1-[2 p-1]^{2}=4 p(1-p) \tag{14}
\end{equation*}
$$

Set $X_{0}=0$, so that $X_{1}=X_{0}+S$. Thus, X_{1} has the same probability distribution as that of S; thus, in view of (10), (11) and (13),

$$
\begin{gather*}
p_{X_{1}}(x)= \begin{cases}1-p & \text { if } x=-1 \\
p & \text { if } x=1\end{cases} \tag{15}\\
E\left(X_{1}\right)=2 p-1, \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(X_{1}\right)=4 p(1-p) \tag{17}
\end{equation*}
$$

Next, observe that

$$
\begin{equation*}
X_{2}=X_{1}+S \tag{18}
\end{equation*}
$$

and that possible values for X_{2} are $-2,0$, and 2. For those values of X_{2} we compute

$$
\begin{aligned}
p_{X_{2}}(k) & =\operatorname{Pr}\left(X_{1}+S=k\right) \\
& =\sum_{\ell} \operatorname{Pr}\left(S=\ell, X_{1}=k-\ell\right) \\
& =\sum_{\ell} \operatorname{Pr}(S=\ell) \cdot \operatorname{Pr}\left(X_{1}=k-\ell\right),
\end{aligned}
$$

since X_{1} and S are independent. We then have that

$$
\begin{equation*}
p_{X_{2}}(k)=p_{S}(-1) \cdot p_{X_{1}}(k+1)+p_{S}(1) \cdot p_{X_{1}}(k-1) . \tag{19}
\end{equation*}
$$

Using (10) and (15), we obtain from (19) that

$$
p_{X_{2}}(x)= \begin{cases}(1-p)^{2} & \text { if } x=-2 \tag{20}\\ 2(1-p) p & \text { if } x=0 \\ p^{2} & \text { if } x=2\end{cases}
$$

Finally, use (18) to get

$$
\begin{equation*}
E\left(X_{2}\right)=E\left(X_{1}\right)+E(S)=2(2 p-1) \tag{21}
\end{equation*}
$$

where we have used (11) and (16); and

$$
\begin{equation*}
\operatorname{Var}\left(X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}(S)=8 p(1-p) \tag{22}
\end{equation*}
$$

since X_{1} and S are independent, where we have used (14) and (17).
(b) Let X_{3} denote the position of the particle in the previous part after 3 units of time. Give probability distribution, expectation and variance of X_{3}. Generalize this result to X_{n}, the position of the particle after n units of time. The set of random variables $\left\{X_{n} \mid n=0,1,2,3, \ldots\right\}$ is an example of a discrete-time random process
Solution: Let S and X_{2} be as defined in part (a), and note that

$$
\begin{equation*}
X_{3}=X_{2}+S \tag{23}
\end{equation*}
$$

Then, the calculations leading to (19) in part (a) imply that

$$
\begin{equation*}
p_{x_{3}}(k)=p_{S}(-1) \cdot p_{x_{2}}(k+1)+p_{S}(1) \cdot p_{X_{2}}(k-1), \tag{24}
\end{equation*}
$$

where $k=-3,-1,1,3$. Thus, using (10) and (20), we obtain from (24) that

$$
p_{X_{3}}(x)= \begin{cases}(1-p)^{3} & \text { if } x=-3 \tag{25}\\ 3(1-p)^{2} p & \text { if } x=-1 \\ 3(1-p) p^{2} & \text { if } x=1 \\ p^{3} & \text { if } x=3\end{cases}
$$

Next, use (23), (11), (14), (16), (17) and the independence of X_{2} and S to get

$$
\begin{equation*}
E\left(X_{3}\right)=3(2 p-1) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(X_{3}\right)=12 p(1-p) \tag{27}
\end{equation*}
$$

Observe that the probabilities given in (20) and (25) are the ones given by the $\operatorname{Binomial}(n, p)$ distribution for $n=2$ and $n=3$, respectively. An inductive argument on n, for

$$
\begin{equation*}
X_{n}=X_{n-1}+S \tag{28}
\end{equation*}
$$

will then yield the following probability distribution for X_{n}

$$
p_{X_{n}}(x)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } x=2 k-n, k=0,1, \ldots, n
$$

Similarly, using (28), the independence of X_{n} and S, and induction on n, we obtain

$$
E\left(X_{n}\right)=n(2 p-1)
$$

and

$$
\operatorname{Var}\left(X_{n}\right)=4 n p(1-p)
$$

3. Exponential Distributions. A continuous random variable, T, is said to have and exponential distribution with parameter $\beta>0$, if its probability density function, f_{T}, is given by

$$
f_{T}(t) \begin{cases}\frac{1}{\beta} e^{-t / \beta} & \text { for } t \geqslant 0 \tag{29}\\ 0 & \text { elsewhere }\end{cases}
$$

(a) Compute the conditional probability

$$
\operatorname{Pr}(T>t+s \mid T>t)
$$

for all $t, s>0$.
Give and interpretation to your result.
Solution: Compute

$$
\begin{equation*}
\operatorname{Pr}(T>t+s \mid T>t)=1-\operatorname{Pr}(T \leqslant t+s \mid T>t) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Pr}(T \leqslant t+s \mid T>t)=\frac{\operatorname{Pr}(T \leqslant t+s, T>t)}{\operatorname{Pr}(T>t)} \tag{31}
\end{equation*}
$$

Next, use the probability density function in (29) to compute

$$
\begin{aligned}
\operatorname{Pr}(T \leqslant t+s, T>t) & =\operatorname{Pr}(t<T \leqslant t+s) \\
& =\int_{t}^{t+s} \frac{1}{\beta} e^{-t / \beta} d t \\
& =e^{-t / \beta}-e^{-(t+s) / \beta}
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}(T \leqslant t+s, T>t)=e^{-t / \beta}\left[1-e^{-s / \beta}\right] \tag{32}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\operatorname{Pr}(T>t) & =\int_{t}^{\infty} \frac{1}{\beta} e^{-t / \beta} d t \\
& =\lim _{b \rightarrow \infty} \int_{t}^{b} \frac{1}{\beta} e^{-t / \beta} d t \\
& =\lim _{b \rightarrow \infty}\left[e^{-t / \beta}-e^{-b / \beta}\right]
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}(T>t)=e^{-t / \beta} \tag{33}
\end{equation*}
$$

It then follows from (32), (33) and (31) that

$$
\begin{equation*}
\operatorname{Pr}(T \leqslant t+s \mid T>t)=\frac{e^{-t / \beta}\left[1-e^{-s / \beta}\right]}{e^{-t / \beta}}=1-e^{-s / \beta} \tag{34}
\end{equation*}
$$

Thus, combining (30) and (34)

$$
\begin{equation*}
\operatorname{Pr}(T>t+s \mid T>t)=e^{-s / \beta}, \quad \text { for } s>0 \tag{35}
\end{equation*}
$$

It follows from (35) that the conditional probability $\operatorname{Pr}(T>t+s \mid T>t)$ is independent of t.
(b) Survival Time After a Treatment. In Problem 5 of Assignment \#9 you showed that the survival time, T, after a treatment can be modeled by an exponential random variable with parameter β, where β is the expected time of survival.
The survival function, $S(t)$, is the probability that a randomly selected person will survive for at least t years after receiving treatment. Compute $S(t)$.
Suppose that a patient has a 70% probability of surviving at least two years. Estimate the expected survival time of the treatment.
Solution: Note that

$$
\begin{equation*}
S(t)=\operatorname{Pr}(T>t)=e^{-t / \beta}, \quad \text { for } t>0 \tag{36}
\end{equation*}
$$

where we have used (33).
If we are given that $S(2)=0.7$, it follows from (36) that

$$
\begin{equation*}
e^{-2 / \beta}=0.7 \tag{37}
\end{equation*}
$$

Solving (37) for β yields

$$
\beta=-\frac{2}{\ln (0.7)} \doteq 5.6
$$

Thus, the expected survival time after treatment is about 5.6 years.

