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Solutions to Review Problems for Exam #2

1. Poisson Processes and Random Mutations. It was shown in class and
in the lecture notes that, if M (t) denotes the number of mutations that occur
in a bacterial colony in the time interval [0,¢], then M (¢) can be modeled by
a Poisson process; in other words, for each ¢ > 0, M(t) is a modeled by a
Poisson random variable with parameter At, where the parameter A denotes the
(constant) average number of mutations per unit time. Hence,

Pr[M(t) = m] — % e M form=0,1,2,3,... and t > 0;
0 elsewhere.

(1)

(a) Let T3 denote the time of occurrence of the first mutation. Give the prob-
ability density function for 7} and compute its expected value.

Solution: First, note that
Pr(Ty > t) = Pr[M(t) = 0]; (2)

since ¢ < Ty if and only if there are no mutations in [0, ¢].
It follows from (2) and (1) with m = 0 that

Pr(Ty > t) = e,

so that
Pr(Ty <t)=1—¢, fort>0. (3)
We conclude from (3) that 77 has cdf given by
L—e  fort>0;
F.(t)= ’ ’ 4
T1<) {O for t < 0. (4)

Differentiating F,, (t) with respect to ¢, for ¢ # 0 in (4), yields the pdf

e ™M for t > 0;
fr, (1) =
0 for t <0,

so that 77 has an exponential distribution with parameter 1/A. Hence,

1

B(T}) = ;-
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(b)

Pr[M(t) > 2]

M(t)=1
Compute the limits %im ®) ] and lim and give in-

—0 t t—0
terpretations to your results.

Solution: Use 1 with m = 1 to compute

Pr[M(t) = 1] A e M

" = e ™ fort #0,

so that PeIML(t .
L Pr(M () = 1]

t—0 t

— )\ (5)

An interpretation of (5) is that, when ¢ > 0 is very small, the probability
that there will be exactly one mutation in [0, 1] is approximately propor-
tional to ¢, with constant of proportionality .

Next, observe that
Pr[M(t) > 2] =1—-Pr[M(t) < 1] =1—Pr[M(t) =0] — Pr[M(t) = 1],

so that
Pr[M(t) >2]=1—e - Xt e (6)

Dividing on both sides of (6) by ¢ # 0 we then obtain

; = ; —Xe M (7)
Note that, by L'Hospital’s Rule,
Y
lim = lim Ae ™ = \; (8)
t—0 t t—0
so that, combining (7) and (8),
Pr[M(t) > 2
lim DM 22, 9)
t—0 t

Thus, the probability that there will be two or more mutations in [0, ¢],
when |¢| is very small, is close to 0. O

For each real pair of real numbers, ¢; and ¢y, with ¢; < t,, define Y =
M (ty) — M(t;). Compute the expected value, E(Y), of Y, and give and
interpretation for your result.



Math 183. Rumbos Spring 2012 3

Solution: Compute
E(Y) = E[M(t) — M(t))]
= E[M(ts)] — E[M(t1)]
= My— A
= Ata—t);

so that the expected number of mutations in the interval (¢, t5] is propor-
tional to the length of the interval, ¢t —t;, with constant of proportionality

A [l

2. Random Walk on the Integers. A particle starts at + = 0 and, after one
unit of time, it moves one unit to the right with probability p, for 0 < p < 1,
or to the left with probability 1 — p. Assume that at each time step, whether a
particle will move to the right or to the left is independent of where it has been.

(a) Let X denote the position of the particle after one unit of time and X,
denote that after 2 units of time. Give the probability distributions for X;
and X5 and compute their expectations and variances.

Solution: Let S denote the random variable with values —1 and 1, and
probability distribution function given by

1—p ifx=-1;
ps() :{ T (10)
D ifx = 1.

Then, the expected value of S is

ES)=(-1)(1-p)+1)p=2p—1, (11)
and
Var($) = B(S?) — [E(S), (12)
where
B(S?*) = (-1)*(1=p)+ (1)’p=1. (13)

Next, use (13) and (11) to obtain from (12) that

Var(S) =1 —[2p — 1> = 4p(1 — p). (14)
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Set Xy = 0, so that X; = Xy 4+ S. Thus, X; has the same probability

distribution as that of S; thus, in view of (10), (11) and (13),
(z) 1—p ifx=-1;
xTr) =
P, D ifx= 1,

E(Xl) = 2p— 17

and
Var(X;) = 4p(1 — p).

Next, observe that
X2 = Xl + S)

(15)
(16)
(17)

(18)

and that possible values for X5 are —2, 0, and 2. For those values of X5

we compute

Dx, (k) = Pr(X;+S=k)

= Y Pr(S=(X =k~
l

- ZPT(S =/{)-Pr(X; =k 1),

since X; and S are independent. We then have that

Dx, (k) = ps(_l) "Px, (k + 1) +ps(1) "Px, (k - 1)'

Using (10) and (15), we obtain from (19) that

(1—p)? if v = —2;

Py, (@) =921 —p)p ifx= 0;
p? ifx= 2.

Finally, use (18) to get
B(Xy) = B(X,) + E(S) = 22— 1),
where we have used (11) and (16); and

Var(X,) = Var(X,) 4 Var(S) = 8p(1 — p),

since X; and S are independent, where we have used (14) and (17).

(19)

(20)

(21)

(22)
O
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(b) Let X3 denote the position of the particle in the previous part after 3
units of time. Give probability distribution, expectation and variance of
X3. Generalize this result to X,,, the position of the particle after n units
of time. The set of random variables {X,, | n =0,1,2,3,...} is an example
of a discrete—time random process

Solution: Let S and X, be as defined in part (a), and note that

Xy =Xy + 8. (23)
Then, the calculations leading to (19) in part (a) imply that
Py, (k) = pg(=1)-py,(k+1) +p,(1) - py,(k—1), (24)
where £ = —3,—1,1,3. Thus, using (10) and (20), we obtain from (24)
that
(1—p)? if v = —3;
3(1—p)?p ifx=-1;
Py, () = o e (25)
31—p)p* ifzx= 1,
p? if vt = 3.
Next, use (23), (11), (14), (16), (17) and the independence of X, and S to
get
B(Xs) = 32— 1), (26)
and
Var(X3) = 12p(1 — p). (27)

Observe that the probabilities given in (20) and (25) are the ones given
by the Binomial(n, p) distribution for n = 2 and n = 3, respectively. An
inductive argument on n, for

Xn - Xn—l + Sa (28)

will then yield the following probability distribution for X,

Py, (2) = (Z)pk(l—p)”_k, forx =2k —n, k=0,1,...,n.

Similarly, using (28), the independence of X,, and S, and induction on n,

we obtain
E(X,) =n(2p—1),

and
Var(X,,) = 4np(1 — p).
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3. Exponential Distributions. A continuous random variable, T, is said to have
and exponential distribution with parameter g > 0, if its probability density

function, f,, is given by

l e 8 fort > 0;
fr(#)q 0
0 elsewhere.

(a) Compute the conditional probability
Pr(T'>t+s|T >t)

for all t, s > 0.
Give and interpretation to your result.

Solution: Compute
Pr(T>t+s|T>t) = 1-Pr(T'<t+s|T>t),

where
Pr(T'<t+s5,T > 1)

Pr(T > t)
Next, use the probability density function in (29) to compute

Pr(T<t+s|T>t) =

Pr(T <t+s,T>t) = Prt<T <t+3s)

t+s 1
= / Z Bt
¢ B

I (Y

Y

so that
Pr(T <t+sT>t) = e’t/ﬁ[l—e’s/ﬁ}_

Similarly,
*1
Pr(T >t) = / — 7P at
¢ B

b1
= lim Z etB gt

b—oo [

= lim [e’t/ﬂ — e’b/ﬁ} ,

b—o0

(29)

(32)
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so that
Pr(T >t) = e /5. (33)

It then follows from (32), (33) and (31) that

e B[l — e=5/P]

Pr(l <t+s|T>t) = 7 —1—e/P (34)
€

Thus, combining (30) and (34)
Pr(T >t+s|T>t) = e  fors>0. (35)

It follows from (35) that the conditional probability Pr(T >t + s | T > t)
is independent of ¢. O

Survival Time After a Treatment. In Problem 5 of Assignment #9
you showed that the survival time, T', after a treatment can be modeled by
an exponential random variable with parameter 5, where (3 is the expected
time of survival.

The survival function, S(¢), is the probability that a randomly selected
person will survive for at least ¢ years after receiving treatment. Compute
S(t).

Suppose that a patient has a 70% probability of surviving at least two
years. Estimate the expected survival time of the treatment.

Solution: Note that
S{t)=Pr(T >t)=e"?  fort>0, (36)

where we have used (33).
If we are given that S(2) = 0.7, it follows from (36) that

e P =07 (37)
Solving (37) for g yields
2
= — = 5.0.
& In(0.7)

Thus, the expected survival time after treatment is about 5.6 years. 0]



