## Assignment \#4

## Due on Wednesday, February 13, 2013

Section 3.1 on Modeling Traffic Flow in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

## Background

Let $f: I \rightarrow \mathbf{R}$ denote a continuous, real-valued function defined on an open interval, $I$, of the real line. In this problem set you will establish the following result:
Proposition A. Suppose that

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=0 \quad \text { for all intervals }[a, b] \subset I \tag{1}
\end{equation*}
$$

then, $f(x)=0$ for all $x \in I$.
Do the following problems

1. Assume that $f: I \rightarrow \mathbf{R}$ is continuous and that $f\left(x_{o}\right) \neq 0$ for some $x_{o} \in I$. Use the definition of continuity at $x_{o}$, with $\varepsilon=\frac{\left|f\left(x_{o}\right)\right|}{2}$, to deduce that there exists $\delta>0$ such that $\left[x_{o}-\delta, x_{o}+\delta\right] \subset I$ and

$$
\begin{equation*}
x \in\left[x_{o}-\delta, x_{o}+\delta\right] \Rightarrow f\left(x_{o}\right)-\frac{\left|f\left(x_{o}\right)\right|}{2}<f(x)<f\left(x_{o}\right)+\frac{\left|f\left(x_{o}\right)\right|}{2} . \tag{2}
\end{equation*}
$$

2. Let $f, x_{o}$ and $\delta$ be as in Problem 1. Use (2) to show that, if $f\left(x_{o}\right)>0$, then

$$
\begin{equation*}
x \in\left[x_{o}-\delta, x_{o}+\delta\right] \Rightarrow f(x)>\frac{\left|f\left(x_{o}\right)\right|}{2} . \tag{3}
\end{equation*}
$$

3. Let $f, x_{o}$ and $\delta$ be as in Problem 1. Use (2) to show that, if $f\left(x_{o}\right)<0$, then

$$
\begin{equation*}
x \in\left[x_{o}-\delta, x_{o}+\delta\right] \Rightarrow f(x)<-\frac{\left|f\left(x_{o}\right)\right|}{2} . \tag{4}
\end{equation*}
$$

4. Let $f, x_{o}$ and $\delta$ be as in Problem 1. Use the results in the previous problems in (3) and (4) to show that, if $f\left(x_{o}\right) \neq 0$, then either

$$
\int_{x_{o}-\delta}^{x_{o}+\delta} f(x) d x>\delta\left|f\left(x_{o}\right)\right|>0 \quad \text { or } \quad \int_{x_{o}-\delta}^{x_{o}+\delta} f(x) d x<-\delta\left|f\left(x_{o}\right)\right|<0
$$

5. Prove Proposition A through an indirect argument; that is, assume that (1) holds true, but $f\left(x_{o}\right) \neq 0$ for some $x_{o} \in I$, and derive a contradiction.
