Assignment \#8

Due on Wednesday, March 13, 2013
Read Section 4.1 on Random Variables in the class lecture notes at http://pages.pomona.edu/~ajr04747/.
Read Chapter on Diffusion in the class lecture notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions The probability density function, $p(x, t)$, for the location, X_{t}, of a Brownian particle at time t,

$$
\begin{equation*}
p(x, t)=\frac{1}{\sqrt{4 \pi D t}} \cdot e^{-x^{2} /(4 D t)}, \quad \text { for } x \in \mathbf{R} \text { and } t>0 \tag{1}
\end{equation*}
$$

which was derived in class, is also called the heat kernel. In this set of problems, we derive a few properties of this function.

Do the following problems

1. Verify that p solves the diffusion equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=D \frac{\partial^{2} p}{\partial x^{2}}, \quad \text { for } x \in \mathbf{R} \text { and } t>0 \tag{2}
\end{equation*}
$$

2. Explain why $\int_{-\infty}^{\infty} p(x, t) d x=1$, for all $t>0$. Give an interpretation to this result.
3. Show the following:
(a) If $x \neq 0$, then $\lim _{t \rightarrow 0^{+}} p(x, t)=0$.
(b) If $x=0$, then $\lim _{t \rightarrow 0^{+}} p(x, t)=+\infty$.
4. Use a mathematical software package to sketch the graph of $x \mapsto p(x, t)$ for several values of $t>0$.
5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a bounded function that is Riemann integrable on bounded intervals and define

$$
u(x, t)=\int_{-\infty}^{\infty} p(x-y, t) f(y) d y, \quad \text { for } x \in \mathbf{R} \text { and } t>0
$$

Explain why u solves the diffusion equation

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}, \quad \text { for } x \in \mathbf{R} \text { and } t>0
$$

