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Solutions to Exam #1

1. Assume the amount, Q(t), of a substance in a compartment is given by a dif-
ferentiable function of time, t. Assume also that the substance enters the com-
partment at a constant rate, r > 0, and leaves the compartment at a rate which
is proportional to the amount present in the compartment, with constant of
proportionality  > 0.

(a) State a conservation principle for the amount of substance in the compart-
ment.

Solution: Refer to the flow diagram in Figure 1.

The conservation principle for Q in this case reads

dQ

dt
= Rate of Q in − Rate of Q out, (1)

where
Rate of Q in = r (2)

and
Rate of Q out = Q. (3)

□

(b) Use the conservation principle stated in the previous part to derive a differ-
ential equation model for the evolution in time of the amount of substance
in the compartment.

Solution: Combine the equations in (1)–(3) to get the ordinary differen-
tial equation

dQ

dt
= r − Q. (4)

□

(c) Solve the differential equation model on the previous part and state what
the model predicts about the amount of substance in the compartment in
the long run.

Solution: Write the differential equation in (4) aa

dQ

dt
= −

[
Q− r



]
,

and use separation of variables to get the general solution

Q(t) =
r


+ ce−t, for t ⩾ 0, (5)
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Figure 1: Flow Diagram for Problem 1

where c is a constant.

It follows from (5) and the assumption that  > 0 that the amount the

substance in the compartment tends towards the limiting value
r


in the

long run. □

2. The differential equation

dN

dt
= rN

(
1− N

K

)
− EN, (6)

models a bacterial population that is being harvested at a rate proportional
to the number of bacteria, N , in the culture. The parameter E is called the
harvesting effort.

(a) Give an interpretation to the model. In particular, what happens to the
population in the absence of harvesting? What are the units for each of
the parameters r, K and E?

Solution: The equation in (6) models a population that experience logis-
tic growth in the absence of harvesting.

The intrinsic growth rate has units of 1 over time; the harvesting effort, E,
also has units of 1 over time; the carrying capacity, K, has unit of number
of cells. □

(b) Nondimensionalize the differential equation in (6) by introducing dimen-

sionless variables u =
N

�
and � =

t

�
to obtain the dimensionless equa-

tion
du

d�
= u (1− u)− �u, (7)

where � is a dimensionless parameters.
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Express � in terms of the original parameters, and verify that it is dimen-
sionless.

Solution: Apply the Chain Rule to obtain

du

d�
=
du

dt
⋅ dt
d�
, (8)

where
du

dt
=

1

�

dN

dt
(9)

and
dt

d�
= �. (10)

Substituting (9) and (10) into (8) then yields

du

d�
=
�

�

dN

dt
. (11)

It follows from (11) and the differential equation in (6) that

du

d�
=
�

�
rN

(
1− N

K

)
− �E

�
N,

which can be re–written as

du

d�
= �r

N

�

(
1− N/�

K/�

)
− �EN

�
,

or
du

d�
= �ru

(
1− u

K/�

)
− �Eu. (12)

Next, set
�r = 1, (13)

K

�
= 1, (14)

and
� = �E, (15)

so that

� =
1

r
,

� = K,
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and

� =
E

r
. (16)

Substituting (13)–(15) into (12) yields (7), where, according to (16), � is
dimensionless because r and E have the same units. □

(c) Compute the equilibrium solutions of the equation in (7). Give interpre-
tations for each of the equilibrium points and determine conditions under
which the model in (7) yields biologically feasible equilibrium solutions.
Express those conditions in terms of the original parameters. Determine
the nature of the stability of the biological feasible equilibrium solutions.

Solution: Set

f(u) = u (1− u)− �u, for all u ∈ ℝ; (17)

then, equilibrium points of the differential equation in (7) are solutions to
the equation

f(u) = 0,

or
u1 = 0 and u2 = 1− �. (18)

In order to obtain a biologically feasible solution, we must require that

� < 1,

or, in view of (16),
E < r;

in other words, the harvesting effort has to be less than the intrinsic growth
rate of the population.

In order to determine the stability of the equilibrium solutions in (18)
for the case � < 1, we apply the Principle of Linearized Stability to the
function, f , defined in (17), whose derivative is given by

f ′(u) = 1− �− 2u, for all u ∈ ℝ. (19)

From f ′(u1) = 1 − � > 0, we conclude that u1 = 0 is unstable. From
f ′(u2) = 1(1 − �) < 0 we conclude that u2 = 1 − � is asymptotically
stable. □
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3. The initial value problem for the partial differential equation⎧⎨⎩
∂u

∂t
+ g′(u)

∂u

∂x
= 0;

u(x, 0) = f(x),

(20)

where
g(u) = u(1− u), (21)

was formulated in class as a model for traffic flow on a one–lane freeway.

(a) Give the equation for the characteristic curves of the partial differential
equations in (20) and the differential equation that u satisfy when evalu-
ated on a characteristic curve.

Solution: The equation for the characteristic curves is given by

dx

dt
= g′(u). (22)

On characteristic curves, a solution, u, to the partial differential equation
in (20) satisfies the ordinary differential equation

du

dt
= 0,

which shows that u is constant along characteristic curves. We write

u(x, t) = '(k), (23)

where '(k) is the constant value of u on the characteristic indexed by k.

Using the value for u in (23), the equation for the characteristic curves in
(22) can be re–written as

dx

dt
= g′('(k)). (24)

Solving the differential equation in (24) yields the equation for the char-
acteristic curves

x = g′('(k))t+ k, (25)

where the parameter k corresponds to the value on the x–axis on which
the characteristic curves meet the x–axis.

□
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(b) Give an expression that defines a solution, u(x, t), to (20) implicitly.

Solution: Solve for k in (25) and substitute into (23) to obtain the ex-
pression

u(x, t) = '(x− g′(u(x, t))t), (26)

which gives a solution of the partial differential equation in (20) implicitly.
□

(c) For the initial density

f(x) =

⎧⎨⎩
1, if x < −1;

1

2
(1− x), if − 1 ⩽ x < 1;

0, if x ⩾ 1,

(27)

sketch the characteristic curves of the partial differential equation in (20).

Solution: Using the initial condition in (20) with f as given in (27), we
obtain from (26) that

'(x) = f(x), for all x ∈ ℝ,

so that (26) can now be re–written as

u(x, t) = f(x− g′(u(x, t))t). (28)

Accordingly, the equation for the characteristic curves in (25) can now be
re–written as

x = g′(f(k))t+ k, (29)

so that the characteristic curves will be straight lines in the xt–plane of
slope 1/g′(f(k)) going through (k, 0) for k ∈ ℝ, where g′(u) is obtained
from (21) as

g′(u) = 1− 2u. (30)

For instance, using (30), (27) and (29) we get that the equations for the
characteristic curves for k ⩽ −1 are given by

x = −t+ k, for k ⩽ −1. (31)

The curves described by (31) are straight lines with slope −1 going through
(k, 0), for k ⩽ −1. Some of these are pictured in Figure 2. Similarly, for
k ⩾ 1, the curves in (29) have equations

x = t+ k, for k ⩾ 1,
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Figure 2: Characteristic Curves for Problem (20)

which are straight lines of slope 1 going through (k, 0), for k ⩾ 1; some of
these lines are also sketched in Figure 2.

For values of k between −1 and 1, the slopes of the lines in (29) are
given by 1/g′(f(k)), where f(k) ranges from 1 at k = −1, to 0 at k = 1;
so, according to (30), the slopes of the lines are negative and increase in
absolute value to ∞ as k approaches 0. At k = 0, f(k) = 1/2, so that
g′(f(k)) = 0, by virtue of (30), so that the characteristic curve will be
x = 0, according to (29), or the t–axis. As k ranges from 0 to 1, the
characteristic curves fan out from the t–axis to the line x = t + 1. A few
of these curves are shown in Figure 2. □

(d) Explain how the initial value problem (20) can be solved for the initial
condition given in (27), and give a formula for u(x, t).

Solution: Since the characteristic curves do not intersect for t > 0, the
initial value problem in (20) with initial density given in (27) can always
be solved by traveling back along the characteristic curves until it hits the
x–axis at a point (k, 0), and then reading the value of the initial density,
u(k, 0) = f(k), at that point. For example, if the point (x, t) lies in the
region x < −t − 1, we see from Figure 2 that the characteristic curve
containing the point (x, t) will meet the x–axis at some point (k, 0) with
k < −1; since, f(k) = 1 for k < −1, it follows from (28) that

u(x, t) = 1, for x < −t− 1, and t ⩾ 0. (32)

Similarly, if x ⩾ x + t, then the characteristic curve containing (x, t) will
meet the x–axis at some point (k, 0) with k ⩾ 1; since f(k) = 0 for k ⩾ 1,
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it follows from (28) that

u(x, t) = 0, for x ⩾ t+ 1, and t ⩾ 0. (33)

For (x, t) lying in the region between the lines x = −t−1 and x = t+1, the
characteristic curve containing the point will meet the x–axis at a point

(k, 0) with −1 ⩽ k ⩽ 1. Since f(k) =
1

2
(1 − k) for those values of k, by

(27), it follows from (28) that

u(x, t) =
1

2
[1− (x− g′(u(x, t))t)], for − t− 1 ⩽ x ⩽ t+ 1. (34)

Using (30), we can re–write (34) as

u(x, t) =
1− x+ t

2
− u(x, t)t, for − t− 1 ⩽ x ⩽ t+ 1. (35)

Solving for u(x, t) in (35) yields

u(x, t) =
1− x+ t

2(1 + t)
, for − t− 1 ⩽ x ⩽ t+ 1. (36)

Finally, putting together the results in (32), (33) and (36), we obtain the
following formula for u(x, t):

u(x, t) =

⎧⎨⎩
1, for x < −t− 1;
1− x+ t

2(1 + t)
, for − t− 1 ⩽ x ⩽ t+ 1;

0, for x > t+ 1,

for t ⩾ 0. □


