Assignment \#1

Due on Friday, February 1, 2013
Read Chapter 1, Motivation for the Course, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Sections 2.1, 2.2, and 2.3 in Chapter 2, Euclidean n-dimensional Space, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let $v_{1}=\binom{1}{2}$ and $v_{2}=\binom{2}{1}$.
(a) Write the vector $v=\binom{1}{1}$ as a linear combination of v_{1} and v_{2}. That is, find scalars c_{1} and c_{2} such that $v=c_{1} v_{1}+c_{2} v_{2}$.
(b) Write any vector $v=\binom{x}{y}$ in \mathbb{R}^{2} as a linear combination of v_{1} and v_{2}.
2. In this problem, a, b, c and d denote scalars, and elements in \mathbb{R}^{n} are expressed as row vectors for convenience.
(a) Find a, b and c so that $a(2,3,-1)+b(1,0,4)+c(-3,1,2)=(7,2,5)$, if possible.
(b) Find a, b, c and d so that

$$
a(1,0,0,0,0)+b(1,1,0,0,0)+c(1,1,1,0,0)+d(1,1,1,1,0)=(8,5,-2,3,0),
$$

if possible.
3. Show that it is impossible to find scalars a, b, c and d so that

$$
a(1,0,0,0,0)+b(1,1,0,0,0)+c(1,1,1,0,0)+d(1,1,1,1,0)=(8,5,-2,3,1) .
$$

4. The equation $5 x-2 y+8 z=0$ describes a plane in \mathbb{R}^{3}. Let $\left(a_{1}, a_{2}, a_{3}\right)$ be any point on the plane; that is $5 a_{1}-2 a_{2}+8 a_{3}=0$. Show that the vector $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ is a linear combination of the vectors $\left(\begin{array}{l}2 \\ 5 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 4 \\ 1\end{array}\right)$.
5. Let $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid\left(x_{1}, x_{2}, x_{3}\right)=c_{1}(2,5,0)+c_{2}(0,4,1)\right\}$ show that if $(x, y, z) \in W$, then $5 x-2 y+8 z=0$. What can you conclude from this and the statement in problem 4?
