Assignment \#17

Due on Monday, April 8, 2013
Read Section 3.3, on Invertibility, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Explain why the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

is invertible, and use elementary row operations to compute its inverse.
2. Prove that, if $a d-b c \neq 0$, then the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad$ is invertible and compute A^{-1}.
3. A matrix $A \in \mathbb{M}(m, n)$ is said to be singular if the equation $A x=0$ has non-trivial solutions in \mathbb{R}^{n}.
(a) Show that if $m<n$, then A is singular.
(b) Prove that A is singular if and only if the columns of A are linearly dependent in \mathbb{R}^{m}.
4. A matrix $A \in \mathbb{M}(m, n)$ is said to be nonsingular if the equation $A x=\mathbf{0}$ has only the trivial solution.
(a) Prove that, if $A \in \mathbb{M}(m, n)$ is nonsingular, then the columns of A are linearly independent.
(b) Deduce that, if $A \in \mathbb{M}(m, n)$ is nonsingular, then $\operatorname{dim}\left(C_{A}\right)=n$, where C_{A} denotes the column space of A; that is, C_{A} is the span of the columns of A.
5. Let A denote an $n \times n$ matrix. Prove that A is nonsingular if and only if A is invertible.

