Assignment #19

Due on Monday, April 15, 2013

Read Section 4.2, on *Linear Functions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.3, on *Matrix Representation of Linear Functions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.4, on *Compositions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.1 on *Linear Transformations* in Thrall and Tornheim (pp. 32–35).

Read Section 2.2 on *Matrix of a Linear Transformation* in Thrall and Tornheim (pp. 36–41).

Do the following problems

1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a function satisfying

$$f\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}-2\\3\end{pmatrix}, f\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}5\\1\end{pmatrix}$$
 and $f\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}3\\2\end{pmatrix}$.

(a) Show that f cannot be linear.

(b) What would
$$f\begin{pmatrix}1\\1\end{pmatrix}$$
 be if f was a linear function?

2. Let $T \colon \mathbb{R}^2 \to \mathbb{R}^3$ be a linear function satisfying

$$T\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}2\\3\\-1\end{pmatrix}$$
 and $T\begin{pmatrix}1\\2\end{pmatrix} = \begin{pmatrix}-5\\1\\1\end{pmatrix}$.

(a) Find the matrix representation for T relative to the standard bases in \mathbb{R}^2 and \mathbb{R}^3 .

(b) Give formula for computing $T\begin{pmatrix}x\\y\end{pmatrix}$ for any $\begin{pmatrix}x\\y\end{pmatrix}$ in \mathbb{R}^2 .

(c) Compute $T\begin{pmatrix}4\\7\end{pmatrix}$.

- 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ denote the linear transformation defined in Problem 2.
 - (a) Determine the image, $\mathcal{I}_T = \{ w \in \mathbb{R}^3 \mid w = T(v) \text{ for some } v \in \mathbb{R}^2 \}, \text{ of } T.$
 - (b) Find a basis for \mathcal{I}_T and compute dim (\mathcal{I}_T) .
- 4. The projection $P_u \colon \mathbb{R}^3 \to \mathbb{R}^3$ onto the direction of the unit vector u in \mathbb{R}^3 is given by

$$P_u(v) = \langle v, u \rangle \ u \quad \text{for all } v \in \mathbb{R}^3,$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^3 . We proved in class that P_u is a linear function.

- (a) For $u = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$, give the matrix representation for P_u relative to the standard basis in \mathbb{R}^3 .
- (b) For u as defined in the previous part, determine the null space,

$$\mathcal{N}_{P_u} = \{ v \in \mathbb{R}^3 \mid P_u(v) = \mathbf{0} \},\$$

of P_u .

- (c) Find a basis for \mathcal{N}_{P_u} and compute dim (\mathcal{N}_{P_u}) .
- 5. Let $T \colon \mathbb{R}^n \to \mathbb{R}^m$ and $R \colon \mathbb{R}^m \to \mathbb{R}^k$ denote two linear functions. The composition of R and T, denoted by $R \circ T$, is the function $R \circ T \colon \mathbb{R}^n \to \mathbb{R}^k$ defined by

$$R \circ T(v) = R(T(v))$$
 for all $v \in \mathbb{R}^n$.

- (a) Prove that the composition $R \circ T$ is a linear function from \mathbb{R}^n to \mathbb{R}^k .
- (b) Show that $\mathcal{N}_T \subseteq \mathcal{N}_{R \circ T}$.
- (c) Show that $\mathcal{I}_{R\circ T} \subseteq \mathcal{I}_R$.