Assignment #22

Due on Monday, April 22, 2013

Read Section 4.5, on *Orthogonal Transformations*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.6.1, on *Areas of Parallelograms*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.6.2, on *Determinants of* 2 × 2 *Matrices*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Orthogonal Transformation. An $n \times n$ matrix, A, is said to be **orthogonal** if

$$A^T A = I,$$

where I denotes the identity matrix in $\mathbb{M}(n, n)$.

A linear transformation, $R: \mathbb{R}^n \to \mathbb{R}^n$ is said to be orthogonal, if its matrix representation with respect to the standard basis in \mathbb{R}^n , M_R , is an orthogonal matrix.

Determinant of a 2×2 **matrix.** The determinant of the 2×2 matrix

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

is define to be

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Geometrically, the absolute value of the determinant of A gives the area of the parallelogram determined by the columns of A.

Do the following problems

- 1. Let R_1 and R_2 denote two orthogonal transformations from \mathbb{R}^n to \mathbb{R}^n . Prove that the composition $R_2 \circ R_1$ is also an orthogonal transformation.
- 2. Let T_1 and T_2 denote two linear transformations from \mathbb{R}^n to \mathbb{R}^n . Prove that if the composition $T_2 \circ T_1$ is singular, then either T_1 or T_2 is singular.

3. Consider the following 2×2 elementary matrices:

 E_1 is obtained from the 2 × 2 identity matrix, I, by performing the elementary row operation $R_1 \leftrightarrow R_2$;

 E_2 is obtained from the 2 × 2 identity matrix, *I*, by performing the elementary row operation $aR_1 + R_2 \rightarrow R_2$, for some scalar *a*; and

 E_3 is obtained from the 2 × 2 identity matrix, *I*, by performing the elementary row operation $bR_2 \rightarrow R_2$, for a nonzero scalar *b*.

Compute the determinants of the matrices E_1 , E_2 and E_3 .

4. Let E_1 , E_2 and E_3 be the elementary matrices defined in Problem 3 and let B denote any 2×2 matrix. Verify that

$$\det(E_i B) = \det(E_i) \cdot \det(B) \quad \text{for } i = 1, 2, 3.$$

5. Let A denote any 2×2 matrix.

Prove that A is invertible if and only if $det(A) \neq 0$.

If $det(A) \neq 0$, give a formula for computing A^{-1} in terms of det(A) and the entries of A.