Assignment #23

Due on Friday, April 26, 2013

Read Section 4.6.2, on *Determinant of* 2×2 *matrices,* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.6.4, on *The Cross-Product*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.6.5, on *The Triple Scalar Product*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.6.6, on *Determinant of* 3×3 *matrices*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Determinant of a 3×3 **matrix.** The determinant of the 3×3 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

is defined to be

$$\det(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}.$$

Geometrically, the absolute value of the determinant of A gives the volume of the parallelepiped determined by the columns of A.

Properties of the determinant of 3×3 matrices.

See Proposition 4.6.10 and Proposition 4.6.16 in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let

$$A = \begin{pmatrix} 1 & 2 & 3\\ 1 & 0 & 1\\ 1 & 1 & 1 \end{pmatrix}.$$

Compute det(A).

Based on your answer, what can you say about the matrix A?

2. Let

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \\ 3 & 1 & 0 \end{pmatrix}.$$

Compute det(A).

Based on your answer, what can you say about the matrix A?

3. Given a vector
$$n = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$$
, define the 3×3 matrix $\begin{pmatrix} 0 & -c & b \end{pmatrix}$

$$A_n = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}.$$

- (a) Compute $det(A_n)$ and deduce that A_n is singular.
- (b) Assume that $v \neq \mathbf{0}$ and compute the null space, \mathcal{N}_{A_n} , of A_n . Give a basis for \mathcal{N}_{A_n} and compute dim (\mathcal{N}_{A_n}) .
- 4. Given a 2 × 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the trace of A, denoted tr(A), is defined to be tr(A) = a + d.

For any value λ , verify that

$$\det(A - \lambda I) = \lambda^2 - \operatorname{tr}(A) \ \lambda + \det(A),$$

where I denotes the 2×2 identity matrix.

- 5. Let $A = \begin{pmatrix} 1 & -2 \\ 2 & 5 \end{pmatrix}$.
 - (a) Use the result of Problem 4 to find a value of λ for which the equation

$$Av = \lambda v, \tag{1}$$

has a nontrivial solution $v \in \mathbb{R}^2$.

(b) For a value of λ found in part (a), give the solution space of the equation in (1) and compute its dimension.