Assignment \#23

Due on Friday, April 26, 2013
Read Section 4.6.2, on Determinant of 2×2 matrices, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.6.4, on The Cross-Product, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.6.5, on The Triple Scalar Product, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.6.6, on Determinant of 3×3 matrices, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Determinant of a 3×3 matrix. The determinant of the 3×3 matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

is defined to be

$$
\operatorname{det}(A)=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{21}\left|\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{31}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| .
$$

Geometrically, the absolute value of the determinant of A gives the volume of the parallelepiped determined by the columns of A.

Properties of the determinant of 3×3 matrices.
See Proposition 4.6.10 and Proposition 4.6.16 in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Compute $\operatorname{det}(A)$.
Based on your answer, what can you say about the matrix A ?
2. Let

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & -1 & 2 \\
3 & 1 & 0
\end{array}\right)
$$

Compute $\operatorname{det}(A)$.
Based on your answer, what can you say about the matrix A ?
3. Given a vector $n=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$, define the 3×3 matrix

$$
A_{n}=\left(\begin{array}{rrc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

(a) Compute $\operatorname{det}\left(A_{n}\right)$ and deduce that A_{n} is singular.
(b) Assume that $v \neq \mathbf{0}$ and compute the null space, $\mathcal{N}_{A_{n}}$, of A_{n}. Give a basis for $\mathcal{N}_{A_{n}}$ and compute $\operatorname{dim}\left(\mathcal{N}_{A_{n}}\right)$.
4. Given a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the trace of A, denoted $\operatorname{tr}(A)$, is defined to be $\operatorname{tr}(A)=a+d$.
For any value λ, verify that

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)
$$

where I denotes the 2×2 identity matrix.
5. Let $A=\left(\begin{array}{rr}1 & -2 \\ 2 & 5\end{array}\right)$.
(a) Use the result of Problem 4 to find a value of λ for which the equation

$$
\begin{equation*}
A v=\lambda v \tag{1}
\end{equation*}
$$

has a nontrivial solution $v \in \mathbb{R}^{2}$.
(b) For a value of λ found in part (a), give the solution space of the equation in (1) and compute its dimension.

