Assignment #3

Due on Friday, February 8, 2013

Read Section 2.4 on *Linear Independence*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.5 on *Independence of Vectors* in Thrall and Tornheim (pp. 13–18).

Do the following problems

1. Consider the vectors v_1 , v_2 and v_3 in \mathbb{R}^3 given by

$$v_1 = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2\\5\\1 \end{pmatrix}$$
 and $v_3 = \begin{pmatrix} 0\\-4\\3 \end{pmatrix}.$

- (a) If possible, write the vector v_3 as a linear combination of v_1 and v_2 .
- (b) Determine whether the set $\{v_1, v_2, v_3\}$ spans \mathbb{R}^3 .
- 2. Let v_1 , v_2 and v_3 be as given in the previous problem. Find a linearly independent subset of $\{v_1, v_2, v_3\}$ which spans span $\{v_1, v_2, v_3\}$.

3. Show that the set
$$\left\{ \begin{pmatrix} 2\\4\\2 \end{pmatrix}, \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\2 \end{pmatrix} \right\}$$
 is a linearly independent subset of \mathbb{R}^3 .

4. Determine whether the set
$$\left\{ \begin{pmatrix} 2\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\-1\\-2 \end{pmatrix}, \begin{pmatrix} 2\\0\\-1\\0 \end{pmatrix} \right\}$$
 is a linearly independent subset of \mathbb{R}^4 .

5. Show that
$$\left\{ \begin{pmatrix} 2\\2\\6\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3\\-2 \end{pmatrix} \right\}$$
 is a linearly dependent subset

of \mathbb{R}^4 . Write one of the vectors in the set as a linear combination of the other three. Show that the remaining three vectors form a linearly independent subset of \mathbb{R}^4 .