Assignment \#5

Due on Wednesday, February 13, 2013
Read Section 2.5 on Subspaces of Euclidean Space, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.10 on Subspaces of $\mathcal{V}_{n}(\mathcal{F})$ in Thrall and Tornheim (pp. 29-31).

Background and Definitions

(Spans). For any subset S of $\mathbb{R}^{n}, \operatorname{span}(S)$ is the smallest subspace of \mathbb{R}^{n} which contains S; that is, (i) $\operatorname{span}(S)$ is a subspace of \mathbb{R}^{n}; (ii) $S \subseteq \operatorname{span}(S)$; and (iii) for any subspace, W, of \mathbb{R}^{n} such that $S \subseteq W, \operatorname{span}(S) \subseteq W$.

Do the following problems

1. Let S_{1} and S_{2} denote two subsets of \mathbb{R}^{n} such that $S_{1} \subseteq S_{2}$.
(a) Prove that $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$.
(b) Prove that if S_{1} spans \mathbb{R}^{n}, then $\operatorname{span}\left(S_{2}\right)=\mathbb{R}^{n}$.
2. Let $S=\left\{v_{1}, v_{2}, \ldots v_{k}\right\}$, where be $v_{1}, v_{2}, \ldots v_{k}$ are vectors in \mathbb{R}^{n}. The symbol $S \backslash\left\{v_{j}\right\}$ denotes the set S with v_{j} removed from the set, for $j \in\{1,2, \ldots, k\}$. Suppose that $v_{j} \in \operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)$ for some j in $\{1,2, \ldots, k\}$. Prove that

$$
\operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)=\operatorname{span}(S)
$$

3. Suppose that W is a subspace of \mathbb{R}^{n} and that $v_{1}, v_{2}, \ldots, v_{k} \in W$. Prove that

$$
\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq W
$$

4. Let W be a subspace of \mathbb{R}^{n}. Prove that if the set $\{v, w\}$ spans W, then the set $\{v, v+w\}$ also spans W.
5. Let W be the solution set of the homogeneous system

$$
\left\{\begin{array}{cc}
-x_{1}+2 x_{2}-3 x_{3}=0 \\
2 x_{1}-x_{2}+4 x_{3}=0
\end{array}\right.
$$

Solve the system to determine W, and find a set, S, of vectors in \mathbb{R}^{3} such that

$$
W=\operatorname{span}(S)
$$

Deduce, therefore, that W is a subspace of \mathbb{R}^{3}.

