Assignment \#6

Due on Friday, February 15, 2013
Read Section 2.7 on Connections with the Theory of Systems Linear Equations, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let W denote the solution space of the equation

$$
3 x_{1}+8 x_{2}+2 x_{3}-x_{4}+x_{5}=0
$$

Find a linearly independent subset, S, of \mathbb{R}^{5} such that $W=\operatorname{span}(S)$.
2. Let W denote the solution space of the system

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}-x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0
\end{array}\right.
$$

Find a linearly independent subset, S, of \mathbb{R}^{3} such that $W=\operatorname{span}(S)$.
3. In the following system, find the value or values of λ for which the system has nontrivial solutions. In each case, give a a linearly independent subset of \mathbb{R}^{2} which generates the solution space.

$$
\left\{\begin{array}{r}
(\lambda-3) x+y=0 \\
x+(\lambda-3) y=0
\end{array}\right.
$$

4. Let $v \in \mathbb{R}^{n}$ and S be a subset of \mathbb{R}^{n}.
(a) Show that the set $\{v\}$ is linearly independent if and only if $v \neq \mathbf{0}$.
(b) Show that if $\mathbf{0} \in S$, then S is linearly dependent.
5. Let v_{1} and v_{2} be vectors in \mathbb{R}^{n}, and let c be a scalar.
(a) Show that $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is also linearly independent.
(b) Show that

$$
\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)=\operatorname{span}\left(\left\{v_{1}, c v_{1}+v_{2}\right\}\right) .
$$

