Assignment #6

Due on Friday, February 15, 2013

Read Section 2.7 on *Connections with the Theory of Systems Linear Equations*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let W denote the solution space of the equation

$$3x_1 + 8x_2 + 2x_3 - x_4 + x_5 = 0$$

Find a linearly independent subset, S, of \mathbb{R}^5 such that $W = \operatorname{span}(S)$.

2. Let W denote the solution space of the system

$$\begin{cases} x_1 - 2x_2 - x_3 = 0\\ 2x_1 - 3x_2 + x_3 = 0. \end{cases}$$

Find a linearly independent subset, S, of \mathbb{R}^3 such that $W = \operatorname{span}(S)$.

3. In the following system, find the value or values of λ for which the system has nontrivial solutions. In each case, give a a linearly independent subset of \mathbb{R}^2 which generates the solution space.

$$\begin{cases} (\lambda - 3)x + y &= 0\\ x + (\lambda - 3)y &= 0 \end{cases}$$

- 4. Let $v \in \mathbb{R}^n$ and S be a subset of \mathbb{R}^n .
 - (a) Show that the set $\{v\}$ is linearly independent if and only if $v \neq 0$.
 - (b) Show that if $\mathbf{0} \in S$, then S is linearly dependent.
- 5. Let v_1 and v_2 be vectors in \mathbb{R}^n , and let c be a scalar.
 - (a) Show that $\{v_1, v_2\}$ is linearly independent if and only if $\{v_1, cv_1 + v_2\}$ is also linearly independent.
 - (b) Show that

$$\operatorname{span}(\{v_1, v_2\}) = \operatorname{span}(\{v_1, cv_1 + v_2\}).$$