Assignment \#7

Due on Monday, February 18, 2013

Read Section 2.7 on Connections with the Theory of Systems Linear Equations, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Prove that if a homogeneous system of linear equations has one nontrivial solution, then it has infinitely many solutions.
2. Consider the vectors v_{1}, v_{2}, v_{3} and v_{4} in \mathbb{R}^{4} given by

$$
v_{1}=\left(\begin{array}{r}
1 \\
0 \\
-1 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{r}
2 \\
-1 \\
1 \\
-1
\end{array}\right), \quad v_{3}=\left(\begin{array}{r}
0 \\
-1 \\
3 \\
-5
\end{array}\right), \quad \text { and } \quad v_{4}=\left(\begin{array}{r}
1 \\
-3 \\
0 \\
1
\end{array}\right)
$$

Determine whether the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly independent; if not, find a linearly independent subset of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ which spans $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
3. Let $W=\operatorname{span}\left(\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 4 \\ 3\end{array}\right)\right\}\right)$. Find a linearly independent subset of W which spans W.
4. Let W denote the solution space of the system

$$
\begin{cases}3 x_{1}-2 x_{2}-2 x_{3}-x_{4}+x_{5} & =0 \\ x_{1}-3 x_{2}-2 x_{5} & =0 \\ 2 x_{2}+x_{3}+2 x_{4}-x_{5} & =0 \\ -x_{1}+x_{2}-x_{3}+x_{4}-x_{5} & =0\end{cases}
$$

Find a linearly independent subset, S, of \mathbb{R}^{5} such that $W=\operatorname{span}(S)$.
5. Determine whether or not the vector $\left(\begin{array}{l}4 \\ 7 \\ 7 \\ 4\end{array}\right)$ lies in the span of the set

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
3 \\
0
\end{array}\right),\left(\begin{array}{r}
0 \\
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right),\left(\begin{array}{r}
1 \\
-1 \\
3 \\
-2
\end{array}\right)\right\}
$$

