Assignment #9

Due on Monday, February 25, 2013

Read Section 2.9 on Bases, in the class lecture notes at http://pages.pomona.edu/~ajr04747/Read Section 1.6 on Dimension and Basis in Thrall and Tornheim (pp. 19-20).

Background and Definitions

- (Definition of basis for a subspace of \mathbb{R}^n). Let W be a subspace of \mathbb{R}^n . A subset, B, of W is said to be a **basis** for W if and only if
 - (i) B is linearly independent, and
 - (ii) $W = \operatorname{span}(B)$.
- (Column space of a matrix). The column space of a matrix,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$
(1)

denoted by C_A , is the span of the columns of A. That is,

$$C_A = \operatorname{span} \left\{ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\}$$

Thus, C_A is a subspace of \mathbb{R}^m .

• (Null space of a matrix). The **null space** of the matrix A defined in (1), denoted by N_A , is the solution space of the homogenous linear system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0.$$

Thus, N_A is a subspace of \mathbb{R}^n .

Math 60. Rumbos

Do the following problems

1. Let

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 2x + 3y - z = 0 \right\}.$$

Find a basis for W.

2. Let A denote the matrix

Find a basis for the column space, C_A , of the matrix A.

- 3. Find a basis for the null space, N_A , of the matrix, A, defined in (2).
- 4. Given a subset, S, or \mathbb{R}^n , and $v \in S$, the expression $S \setminus \{v\}$ denotes the set obtained by removing the vector v from S.

A subset, S, of a subspace, W, of \mathbb{R}^n is said to be a **minimal generating set** for W iff

- (i) $W = \operatorname{span}(S)$, and
- (ii) for any v in S, the set $S \setminus \{v\}$ does not span W.

Prove that a minimal generating set for W must be linearly independent.

Suggestion: Argue by contradiction; that is, start out your argument assuming that S is a minimal generating set for W, but S is linearly dependent. Then, derive a contradiction.

5. Let $\{v_1, v_2, \ldots, v_n\}$ be a subset of *n* vectors in \mathbb{R}^n . Prove that if $\{v_1, v_2, \ldots, v_n\}$ is linearly independent, then it must also span \mathbb{R}^n .