Exam 1 (Part I)

Friday, March 8, 2013

Name: _____

This is a closed book exam. Show all significant work and provide reasoning for all your assertions. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

- 1. Answer the following questions as thoroughly as possible.
 - (a) State precisely what it means for the subset, S, of \mathbb{R}^n to be linearly independent.
 - (b) Let W denote a subspace of \mathbb{R}^n and B a subset of W. State precisely what it means for B to be a basis for W.
 - (c) Define the dimension of a subspace, W, of \mathbb{R}^n .
 - (d) Let W denote a subspace of \mathbb{R}^n with ordered basis $B = \{w_1, w_2, \dots, w_k\}$. For any vector, w in W, define $[w]_B$, the coordinates of w relative to B.
 - (e) Given vectors v and w in \mathbb{R}^n , state what it means for v and w to be orthogonal.
- 2. Let S denote a subset of \mathbb{R}^n .
 - (a) Give a definition of $\operatorname{span}(S)$.
 - (b) Let v_1, v_2 and v_3 denote vectors in \mathbb{R}^n . Assume that $v_3 \in \text{span}(\{v_1, v_2\})$. Prove that

$$\operatorname{span}(\{v_1, v_2\}) = \operatorname{span}(\{v_1, v_2, v_3\}).$$

- 3. Let W denote a subset of \mathbb{R}^n .
 - (a) State precisely what it means for W to be a subspace of \mathbb{R}^n .
 - (b) Let $\langle v, w \rangle$ denote the Euclidean inner product in \mathbb{R}^n . For a fixed vector u in \mathbb{R}^n , define the set

$$W = \{ w \in \mathbb{R}^n \mid \langle u, w \rangle = 0 \}.$$

Prove that W is a subspace of \mathbb{R}^n .