Solutions to Part I of Exam 1

- 1. Answer the following questions as thoroughly as possible.
 - (a) State precisely what it means for the subset, S, of \mathbb{R}^n to be linearly independent.

Answer: S is linearly independent means that no vector in S is in the span of the other vectors in S. \Box

- (b) Let W denote a subspace of ℝⁿ and B a subset of W. State precisely what it means for B to be a basis for W.
 Answer: B is a bases for W is B spans W and is linearly independent.
- (c) Define the dimension of a subspace, W, of \mathbb{R}^n .

Answer: The dimension of W is the number of vectors in any basis of W.

(d) Let W denote a subspace of \mathbb{R}^n with ordered basis $B = \{w_1, w_2, \ldots, w_k\}$. For any vector, w in W, define $[w]_B$, the coordinates of w relative to B. **Answer:** The coordinates of $v \in W$ relative to the ordered basis $B = \{w_1, w_2, \ldots, w_k\}$ are the unique set of scalars, c_1, c_2, \ldots, c_k such that

$$w = c_1 w_1 + c_2 w_2 + \dots + c_k w_k.$$

We write

$$[v]_B = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$

(e) Given vectors v and w in \mathbb{R}^n , state what it means for v and w to be orthogonal.

Answer: v and w in \mathbb{R}^n are said to be orthogonal if $\langle v, w \rangle = 0$, where $\langle v, w \rangle$ denotes the Euclidean inner product in \mathbb{R}^n .

2. Let S denote a subset of \mathbb{R}^n .

(a) Give a definition of $\operatorname{span}(S)$.

Answer: $\operatorname{span}(S)$ is the smallest subspace of \mathbb{R}^n that contains S. Alternatively, $\operatorname{span}(S)$ is the collection of all finite linear combinations of vectors in S.

(b) Let v_1, v_2 and v_3 denote vectors in \mathbb{R}^n . Assume that $v_3 \in \text{span}(\{v_1, v_2\})$. Prove that

$$\operatorname{span}(\{v_1, v_2\}) = \operatorname{span}(\{v_1, v_2, v_3\}).$$

Proof: Assume that v_1, v_2 and v_3 are vectors in \mathbb{R}^3 with $v_3 \in \text{span}(\{v_1, v_2\})$. From the inclusion $\{v_1, v_2\} \subseteq \{v_1, v_2, v_3\}$ we obtain the inclusion

$$\operatorname{span}(\{v_1, v_2\}) \subseteq \operatorname{span}(\{v_1, v_2, v_3\}),$$
 (1)

since span($\{v_1, v_2\}$) is the smallest subspace of \mathbb{R}^n that contains $\{v_1, v_2\}$. In order to show the reverse inclusion, observe that the fact that

$$\{v_1, v_2\} \subseteq \operatorname{span}(\{v_1, v_2\})$$

and the assumption that $v_3 \in \text{span}(\{v_1, v_2\})$ imply that

$$\{v_1, v_2, v_3\} \subseteq \operatorname{span}(\{v_1, v_2\}).$$
(2)

It follows from (2) that

$$\operatorname{span}(\{v_1, v_2, v_3\}) \subseteq \operatorname{span}(\{v_1, v_2\}),$$
(3)

where we have used the fact span($\{v_1, v_2, v_3\}$) is the smallest subspace of \mathbb{R}^n that contains $\{v_1, v_2, v_3\}$.

Combining (1) and (3) yields what we were asked to prove. \Box

- 3. Let W denote a subset of \mathbb{R}^n .
 - (a) State precisely what it means for W to be a subspace of ℝⁿ.
 Answer: W is a subspace of ℝⁿ if it is (i) non-empty, (ii) closed under vector addition, and (iii) closed under scalar multiplication.
 - (b) Let $\langle v, w \rangle$ denote the Euclidean inner product in \mathbb{R}^n . For a fixed vector u in \mathbb{R}^n , define the set

$$W = \{ w \in \mathbb{R}^n \mid \langle u, w \rangle = 0 \}.$$

Prove that W is a subspace of \mathbb{R}^n .

Proof: We show that W is (i) non-empty, (ii) closed under vector addition, and (iii) closed under scalar multiplication.

- (i) To see that W is nonempty, observe that $0 \in W$ because $\langle u, \mathbf{0} \rangle = 0$.
- (ii) To show that W is closed under vector addition, let w_1 and w_2 be two vectors in W, so that $\langle u, w_1 \rangle = 0$ and $\langle u, w_2 \rangle = 0$. Then, applying the bi-linearity property of the inner product,

$$\langle u, w_1 + w_2 \rangle = \langle u, w_1 \rangle + \langle u, w_2 \rangle = 0 + 0 = 0;$$

hence, $w_1 + w_2 \in W$.

(iii) To see that W is closed under scalar multiplication, let $w \in W$, so that $\langle u, w \rangle = 0$. Then, for any $t \in \mathbb{R}$,

$$\langle u, tw \rangle = t \langle u, w \rangle = t \cdot 0 = 0,$$

where we have used the bi-linearity property of the inner product. We have therefore shown that $tw \in W$ for all $t \in \mathbb{R}$ and all $w \in W$.