Solutions to Part I of Exam 1

1. Answer the following questions as thoroughly as possible.
(a) State precisely what it means for the subset, S, of \mathbb{R}^{n} to be linearly independent.
Answer: S is linearly independent means that no vector in S is in the span of the other vectors in S.
(b) Let W denote a subspace of \mathbb{R}^{n} and B a subset of W. State precisely what it means for B to be a basis for W.
Answer: B is a bases for W is B spans W and is linearly independent.
(c) Define the dimension of a subspace, W, of \mathbb{R}^{n}.

Answer: The dimension of W is the number of vectors in any basis of W.
(d) Let W denote a subspace of \mathbb{R}^{n} with ordered basis $B=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$. For any vector, w in W, define $[w]_{B}$, the coordinates of w relative to B.
Answer: The coordinates of $v \in W$ relative to the ordered basis $B=$ $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ are the unique set of scalars, $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
w=c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k}
$$

We write

$$
[v]_{B}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{k}
\end{array}\right)
$$

(e) Given vectors v and w in \mathbb{R}^{n}, state what it means for v and w to be orthogonal.
Answer: v and w in \mathbb{R}^{n} are said to be orthogonal if $\langle v, w\rangle=0$, where $\langle v, w\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n}.
2. Let S denote a subset of \mathbb{R}^{n}.
(a) Give a definition of $\operatorname{span}(S)$.

Answer: $\operatorname{span}(S)$ is the smallest subspace of \mathbb{R}^{n} that contains S.
Alternatively, $\operatorname{span}(S)$ is the collection of all finite linear combinations of vectors in S.
(b) Let v_{1}, v_{2} and v_{3} denote vectors in \mathbb{R}^{n}. Assume that $v_{3} \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$. Prove that

$$
\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)=\operatorname{span}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)
$$

Proof: Assume that v_{1}, v_{2} and v_{3} are vectors in \mathbb{R}^{3} with $v_{3} \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$. From the inclusion $\left\{v_{1}, v_{2}\right\} \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$ we obtain the inclusion

$$
\begin{equation*}
\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right) \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right) \tag{1}
\end{equation*}
$$

since $\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$ is the smallest subspace of \mathbb{R}^{n} that contains $\left\{v_{1}, v_{2}\right\}$. In order to show the reverse inclusion, observe that the fact that

$$
\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)
$$

and the assumption that $v_{3} \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$ imply that

$$
\begin{equation*}
\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right) \tag{2}
\end{equation*}
$$

It follows from (2) that

$$
\begin{equation*}
\operatorname{span}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right) \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right) \tag{3}
\end{equation*}
$$

where we have used the fact $\operatorname{span}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$ is the smallest subspace of \mathbb{R}^{n} that contains $\left\{v_{1}, v_{2}, v_{3}\right\}$.
Combining (1) and (3) yields what we were asked to prove.
3. Let W denote a subset of \mathbb{R}^{n}.
(a) State precisely what it means for W to be a subspace of \mathbb{R}^{n}.

Answer: W is a subspace of \mathbb{R}^{n} if it is (i) non-empty, (ii) closed under vector addition, and (iii) closed under scalar multiplication.
(b) Let $\langle v, w\rangle$ denote the Euclidean inner product in \mathbb{R}^{n}. For a fixed vector u in \mathbb{R}^{n}, define the set

$$
W=\left\{w \in \mathbb{R}^{n} \mid\langle u, w\rangle=0\right\} .
$$

Prove that W is a subspace of \mathbb{R}^{n}.

Proof: We show that W is (i) non-empty, (ii) closed under vector addition, and (iii) closed under scalar multiplication.
(i) To see that W is nonempty, observe that $0 \in W$ because $\langle u, \mathbf{0}\rangle=0$.
(ii) To show that W is closed under vector addition, let w_{1} and w_{2} be two vectors in W, so that $\left\langle u, w_{1}\right\rangle=0$ and $\left\langle u, w_{2}\right\rangle=0$. Then, applying the bi-linearity property of the inner product,

$$
\left\langle u, w_{1}+w_{2}\right\rangle=\left\langle u, w_{1}\right\rangle+\left\langle u, w_{2}\right\rangle=0+0=0 ;
$$

hence, $w_{1}+w_{2} \in W$.
(iii) To see that W is closed under scalar multiplication, let $w \in W$, so that $\langle u, w\rangle=0$. Then, for any $t \in \mathbb{R}$,

$$
\langle u, t w\rangle=t\langle u, w\rangle=t \cdot 0=0,
$$

where we have used the bi-linearity property of the inner product. We have therefore shown that $t w \in W$ for all $t \in \mathbb{R}$ and all $w \in W$.

