Solutions to Part II of Exam 1

1. Let W denote the solution space of the homogenous system

$$
\left\{\begin{align*}
x_{1}-x_{2}+2 x_{4} & =0 \tag{1}\\
-x_{1}+x_{3}-3 x_{4} & =0 \\
x_{1}-2 x_{2}+x_{3}+x_{4} & =0 \\
2 x_{1}-x_{2}-x_{3}+5 x_{4} & =0
\end{align*}\right.
$$

(a) Find a basis for W and compute $\operatorname{dim}(W)$.

Solution: Perform elementary row operations on the augmented matrix corresponding to the system in (1),

$$
\left(\begin{array}{rrrr:r}
1 & -1 & 0 & 2 & 0 \\
-1 & 0 & 1 & -3 & 0 \\
1 & -2 & 1 & 1 & 0 \\
2 & -1 & -1 & 5 & 0
\end{array}\right),
$$

to get the reduced matrix

$$
\left(\begin{array}{rrrr|r}
1 & 0 & -1 & 3 & 0 \tag{2}\\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

It follows from (2) that the system in (1) is equivalent to the system

$$
\left\{\begin{array}{rl}
x_{1}-x_{3}+3 x_{4} & =0 \tag{3}\\
& x_{2}-x_{3}+x_{4}
\end{array}=0 .\right.
$$

Solving for the leading variables in (3) we obtain

$$
\left\{\begin{array}{l}
x_{1}=t+3 s \tag{4}\\
x_{2}=t+s \\
x_{3}=t \\
x_{4}=-s,
\end{array}\right.
$$

where t and s are arbitrary parameters.
It follows from (4) that solutions to (1) are of the form

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=t\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{r}
3 \\
1 \\
0 \\
-1
\end{array}\right), \quad \text { for } t, s \in \mathbb{R}
$$

It then follows that

$$
W=\operatorname{span}\left(\left\{\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
3 \\
1 \\
0 \\
-1
\end{array}\right)\right\}\right)
$$

so that

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
3 \\
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

is a basis for W. Therefore, $\operatorname{dim}(W)=2$.
(b) Define $V=\left\{v \in \mathbb{R}^{4} \mid\langle v, w\rangle=0\right.$, for all $\left.w \in W\right\}$, where $\langle v, w\rangle$ denotes the Euclidean inner product of v and w in \mathbb{R}^{4}.
Show that V is subspace of \mathbb{R}^{4}, give a basis for V, and compute $\operatorname{dim}(V)$.
Solution: We show that V is (i) non-empty, (ii) closed under vector addition, and (iii) closed under scalar multiplication.
(i) To see that V is nonempty, observe that $0 \in V$ because $\langle\mathbf{0}, w\rangle=0$ for all $w \in W$.
(ii) To show that V is closed under vector addition, let v_{1} and v_{2} be two vectors in V, so that $\left\langle v_{1}, w\right\rangle=0$ and $\left\langle v_{2}, w\right\rangle=0$, for all $w \in W$. Then, applying the bi-linearity property of the inner product,

$$
\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle=0+0=0
$$

for all $w \in W$; so that $v_{1}+v_{2} \in V$.
(iii) To see that V is closed under scalar multiplication, let $v \in V$, so that $\langle v, w\rangle=0$ for all $w \in W$. Then, for any $t \in \mathbb{R}$,

$$
\langle t v, w\rangle=t\langle v, w\rangle=t \cdot 0=0
$$

for all $w \in W$, where we have used the bi-linearity property of the inner product. We have therefore shown that $t v \in V$ for all $t \in \mathbb{R}$ and all $v \in V$.
Thus, V is a subspace of \mathbb{R}^{4}.
Next, we determine subspace V.
Let

$$
w_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad w_{2}=\left(\begin{array}{r}
3 \\
1 \\
0 \\
-1
\end{array}\right)
$$

so that, according to the result in part (b), $\left\{w_{1}, w_{2}\right\}$ is a basis for W. Thus, the vectors in V must be orthogonal to both w_{1} and w_{2}. Hence, if

$$
v=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

is an arbitrary vector in V, it must be the case that

$$
\left\langle w_{1}, v\right\rangle=0 \quad \text { and } \quad\left\langle w_{2}, v\right\rangle=0
$$

or

$$
\left\{\begin{align*}
x_{1}+x_{2}+x_{3} & =0 \tag{5}\\
3 x_{1}+x_{2}-x_{4} & =0
\end{align*}\right.
$$

We solve the system in (5) by performing elementary row operations to the augmented matrix

$$
\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & 0 \\
3 & 1 & 0 & -1 & 0
\end{array}\right)
$$

leading to

$$
\left(\begin{array}{rrrr|r}
1 & 0 & -1 / 2 & -1 / 2 & 0 \\
0 & 1 & -3 / 2 & 1 / 2 & 0
\end{array}\right)
$$

so that the system in (5) is equivalent to the system

$$
\left\{\begin{align*}
x_{1}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} & =0 \tag{6}\\
x_{2}+\frac{3}{2} x_{3}+\frac{1}{2} x_{4} & =0
\end{align*}\right.
$$

Solving for the leading variables in (6) we obtain

$$
\left\{\begin{array}{l}
x_{1}=t+s \\
x_{2}=-3 t-s \\
x_{3}=2 t \\
x_{4}=2 s
\end{array}\right.
$$

where t and s are arbitrary parameters; so that V consists of vectors of the form

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=t\left(\begin{array}{r}
1 \\
-3 \\
2 \\
0
\end{array}\right)+s\left(\begin{array}{r}
1 \\
-1 \\
0 \\
2
\end{array}\right), \quad \text { for } t, s \in \mathbb{R}
$$

Thus,

$$
V=\operatorname{span}\left(\left\{\left(\begin{array}{r}
1 \\
-3 \\
2 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
-1 \\
0 \\
2
\end{array}\right)\right\}\right)
$$

so that

$$
\left\{\left(\begin{array}{r}
1 \\
-3 \\
2 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
-1 \\
0 \\
2
\end{array}\right)\right\}
$$

is a basis for V and $\operatorname{dim}(V)=2$.
2. Let $A=\left(\begin{array}{rrrr}1 & -1 & 1 & 2 \\ -1 & 0 & -2 & -1 \\ 0 & 1 & 1 & -1 \\ 2 & -3 & 1 & 5\end{array}\right)$, and denote by C_{A} the span of the columns of the matrix A.
(a) Give a basis for C_{A} and compute $\operatorname{dim}\left(C_{A}\right)$.

Solution: Denote the columns of A by v_{1}, v_{2}, v_{3} and v_{4}, respectively, and assume that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\mathbf{0} \tag{7}
\end{equation*}
$$

The vector equation in (7) is equivalent to the homogeneous system

$$
\left\{\begin{align*}
c_{1}-c_{2}+c_{3}+2 c_{4} & =0 \tag{8}\\
-c_{1}-2 c_{3}-c_{4} & =0 \\
c_{2}+c_{3}-c_{4} & =0 \\
2 c_{1}-3 c_{2}+c_{3}+5 c_{4} & =0
\end{align*}\right.
$$

We solve the system in (8) by reducing the augmented matrix

$$
\left(\begin{array}{rrrr|r}
1 & -1 & 1 & 2 & 0 \\
-1 & 0 & -2 & -1 & 0 \\
0 & 1 & 1 & -1 & 0 \\
2 & -3 & 1 & 5 & 0
\end{array}\right)
$$

to the matrix

$$
\left(\begin{array}{rrrr|r}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

so that the system in (8) is equivalent to the system

$$
\left\{\begin{align*}
c_{1}+2 c_{3}+c_{4} & =0 \tag{9}\\
c_{2}+c_{3}-c_{4} & =0
\end{align*}\right.
$$

Solving the system in (9) for the leading variables yields

$$
\left\{\begin{array}{l}
c_{1}=2 t+s \tag{10}\\
c_{2}=t-s \\
c_{3}=-t \\
c_{4}=-s
\end{array}\right.
$$

for arbitrary parameters t and s.
It follows from (10) that the vector equation in (7) has infinitely many solutions and therefore the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly dependent.
Next, we find a subset of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ that is linearly independent and also spans C_{A}.
Taking $t=1$ and $s=0$ in (10) yields the following relation from the vector equation in (7)

$$
\begin{equation*}
2 v_{1}+v_{2}-v_{3}=\mathbf{0} . \tag{11}
\end{equation*}
$$

Similarly, taking $t=0$ and $s=1$ in (10) yields the relation

$$
\begin{equation*}
v_{1}-v_{2}-v_{4}=\mathbf{0} \tag{12}
\end{equation*}
$$

Now, it follows from (11) that

$$
v_{3}=2 v_{1}+v_{2}
$$

so that

$$
\begin{equation*}
v_{3} \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right) \tag{13}
\end{equation*}
$$

Similarly, using (12), we obtain that

$$
\begin{equation*}
v_{4} \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right) \tag{14}
\end{equation*}
$$

It follows from (13) and (14) that

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)
$$

so that

$$
\begin{equation*}
C_{A} \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right), \tag{15}
\end{equation*}
$$

since C_{A} is the smallest subspace of \mathbb{R}^{4} that contains the columns of A. On the other hand, since v_{1} and v_{2} are columns of A, we also get that

$$
\begin{equation*}
\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right) \subseteq C_{A} \tag{16}
\end{equation*}
$$

Putting (15) and (16) together, we get that

$$
C_{A}=\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right),
$$

where the set $\left\{v_{1}, v_{2}\right\}$ is linearly independent. Hence, the first two columns of A form a basis for C_{A} and, therefore, $\operatorname{dim}(A)=2$.
(b) Determine whether or not the vector $v=\left(\begin{array}{l}4 \\ 7 \\ 7 \\ 4\end{array}\right)$ is in C_{A}.

Solution: Since $C_{A}=\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$, by part (a), we seek scalars c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=\left(\begin{array}{l}
4 \tag{17}\\
7 \\
7 \\
4
\end{array}\right)
$$

We attempt to solve the equation in (17) by performing elementary row operations on the augmented matrix

$$
\left(\begin{array}{rr:r}
1 & -1 & 4 \\
-1 & 0 & 7 \\
0 & 1 & 7 \\
2 & -3 & 4
\end{array}\right)
$$

We are led to

$$
\left(\begin{array}{rr|r}
1 & -1 & 4 \tag{18}\\
0 & 1 & -11 \\
0 & 0 & 18 \\
0 & 0 & -15
\end{array}\right)
$$

Note that the last two rows of the augmented matrix in (18) lead to false statements. Hence, the equation in (17) has no solutions. Thus, the vector $\left(\begin{array}{l}4 \\ 7 \\ 7 \\ 4\end{array}\right)$
is not in the span of the columns of A.
(c) Given an arbitrary vector $v=\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ in \mathbb{R}^{4}, determine conditions on x, y, z and w that will guarantee that $v \in C_{A}$.
Solution: We seek scalars c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=\left(\begin{array}{c}
x \tag{19}\\
y \\
z \\
w
\end{array}\right) .
$$

We attempt to solve the equation in (19) by performing elementary row operations on the augmented matrix

$$
\left(\begin{array}{rr|c}
1 & -1 & x \\
-1 & 0 & y \\
0 & 1 & z \\
2 & -3 & w
\end{array}\right)
$$

We are led to

$$
\left(\begin{array}{rr|c}
1 & -1 & x \tag{20}\\
0 & 1 & -x-y \\
0 & 0 & x+y+z \\
0 & 0 & -3 x-y+w
\end{array}\right)
$$

In order for the equation in (19) to yield a consistent system, all the entries in the last two rows of the augmented matrix in (20) must be 0 . Hence, in order for the equation (19) to have solutions, it must be the case that

$$
\left\{\begin{array}{c}
x+y+z=0 \\
3 x+y-w=0
\end{array}\right.
$$

