Review Problems for Exam 1

- 1. Consider the set $B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$.
 - (a) Show that B is a basis for \mathbb{R}^2 .
 - (b) Give the coordinates of the vector $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ relative to *B*. Interpret your result geometrically.
- 2. Give a basis for the span of the following set of vectors in \mathbb{R}^4

$$\left\{ \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} -2\\0\\3\\0 \end{pmatrix}, \begin{pmatrix} 1\\-3\\6\\-3 \end{pmatrix}, \begin{pmatrix} 1\\1\\-4\\1 \end{pmatrix} \right\}.$$

3. Find a basis for the solution space of the system

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0\\ 2x_1 - x_2 & -2x_4 = 0\\ -x_1 & +x_3 + x_4 = 0, \end{cases}$$

and compute its dimension.

- 4. Prove that any set of four vectors in \mathbb{R}^3 must be linearly dependent.
- 5. Let v_1 and v_2 denote vectors in \mathbb{R}^n .
 - (a) Show that if the set $\{v_1, v_2\}$ is a linearly independent subset of \mathbb{R}^n , then so is the set $\{v_1, cv_1 + v_2\}$, where c is a scalar, and, conversely, if $\{v_1, cv_1 + v_2\}$ is linearly independent, then so is $\{v_1, v_2\}$.
 - (b) Show that $\operatorname{span}\{v_1, v_2\} = \operatorname{span}\{v_1, cv_1 + v_2\}.$
- 6. Let $S = \{v_1, v_2, \ldots, v_k\}$ be a linearly independent subset of \mathbb{R}^n . Suppose there exists $v \in \mathbb{R}^n$ such that $v \notin \operatorname{span}(S)$. Show that the set $S \cup \{v\}$ is linearly independent.
- 7. Let S denote a nonempty subset of \mathbb{R}^n . Assume that there exists $v \in S$ such that $v \in \operatorname{span}(S \setminus \{v\})$. Show that

$$\operatorname{span}(S \setminus \{v\}) = \operatorname{span}(S).$$

8. Let J and H be planes in \mathbb{R}^3 given by

$$J = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 2x + 3y - 6z = 0 \right\} \quad \text{and} \quad H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x - 2y + z = 0 \right\}.$$

- (a) Give bases for J and H and compute their dimensions.
- (b) Give a basis for the subspace $J \cap H$ and compute dim $(J \cap H)$.
- 9. Let W be a subspace of \mathbb{R}^n .
 - (a) Prove that if $v \in W$ and $v \neq 0$, then rv = sv implies that r = s, where r and s are scalars.
 - (b) Prove that if W has more than one element, then W has infinitely many elements.
- 10. Let W be a subspace of \mathbb{R}^n and S_1 and S_2 be subsets of W.
 - (a) Show that $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.
 - (b) Give an example in which $\operatorname{span}(S_1 \cap S_2) \neq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.
- 11. Let W_1 and W_2 be two subspaces of \mathbb{R}^n . We write $W_1 \oplus W_2$ for the subspace $W_1 + W_2$ for the special case in which $W_1 \cap W_2 = \{\mathbf{0}\}$. Show that every vector $v \in W_1 \oplus W_2$ can be written in the form $v = v_1 + v_2$, where $v_1 \in W_1$ and $v_2 \in W_2$, in one and only one way; that is, if $v = u_1 + u_2$, where $u_1 \in W_1$ and $u_2 \in W_2$, then $u_1 = v_1$ and $u_2 = v_2$.
- 12. Let v_1, v_2, \ldots, v_k be nonzero vectors in \mathbb{R}^n that are mutually orthogonal; that is $\langle v_i, v_j \rangle = 0$ for $i \neq j$. Prove that $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.
- 13. Let $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x y + 2z = 0 \right\}$. Find a basis for W consisting of vectors that are mutually orthogonal.

14. Let $v \in \mathbb{R}^n$ and define $W = \{ w \in \mathbb{R}^n \mid \langle w, v \rangle = 0 \}.$

- - (a) Prove that W is a subspace of \mathbb{R}^n .
 - (b) Suppose that $v \neq \mathbf{0}$ and compute dim(W).