Solutions to Review Problems for Exam 1

1. Consider the set $B=\left\{\binom{1}{1},\binom{-1}{1}\right\}$.
(a) Show that B is a basis for \mathbb{R}^{2}.

Proof: Given that $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$ and that B contains two vectors, to prove that B is a basis for \mathbb{R}^{2}, it suffices to prove that B is linearly independent. Thus, consider the vector equation

$$
\begin{equation*}
c_{1}\binom{1}{1}+c_{2}\binom{-1}{1}=\binom{0}{0} \tag{1}
\end{equation*}
$$

which is equivalent to the system

$$
\left\{\begin{array}{l}
c_{1}-c_{2}=0 \tag{2}\\
c_{1}+c_{2}=0
\end{array}\right.
$$

The system in (2) can be solved to yield the unique solution $c_{1}=c_{2}=0$. Hence, the vector equation in (1) has only the trivial solution, and therefore B is linearly independent.
(b) Give the coordinates of the vector $v=\binom{1}{0}$ relative to B. Interpret your result geometrically.

Solution: We look for scalars, c_{1} and c_{2}, such that

$$
\begin{equation*}
c_{1}\binom{1}{1}+c_{2}\binom{-1}{1}=\binom{1}{0} \tag{3}
\end{equation*}
$$

This is equivalent to solving the system

$$
\left\{\begin{array}{l}
c_{1}-c_{2}=1 \\
c_{1}+c_{2}=0
\end{array}\right.
$$

To solve this system, we may reduce the corresponding augmented matrix,

$$
\left(\begin{array}{rr|r}
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

to

$$
\left(\begin{array}{cc|c}
1 & 0 & 1 / 2 \\
0 & 1 & -1 / 2
\end{array}\right) .
$$

We therefore get that the coordinate vector of $\binom{1}{0}$ relative to B is

$$
\left[\binom{1}{0}\right]_{B}=\binom{1 / 2}{-1 / 2} .
$$

Denote the vectors in B by v_{1} and v_{2}, respectively and in that order, and denote the vector $\binom{1}{0}$ by v. Figure 1 shows the vector v as the sum of the vectors $\frac{1}{2} v_{1}$ and $-\frac{1}{2} v_{2}$.

Figure 1: Coordinates relative to B
2. Give a basis for the span of the following set of vectors in \mathbb{R}^{4}

$$
\left\{\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-3 \\
6 \\
-3
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-4 \\
1
\end{array}\right)\right\} .
$$

Solution: Denote the vectors in the set

$$
\left\{\left(\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{r}
-2 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
-3 \\
6 \\
-3
\end{array}\right),\left(\begin{array}{r}
1 \\
1 \\
-4 \\
1
\end{array}\right)\right\}
$$

by v_{1}, v_{2}, v_{3} and v_{4}, respectively, we look for a linear vector relation of the form

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\mathbf{0} \tag{4}
\end{equation*}
$$

This leads to the system

$$
\begin{cases}c_{1}-2 c_{2}+c_{3}+c_{4} & =0 \tag{5}\\ -c_{1}-3 c_{3}+c_{4} & =0 \\ c_{1}+3 c_{2}+6 c_{3}-4 c_{4} & =0 \\ -c_{1}-3 c_{3}+c_{4} & =0\end{cases}
$$

The augmented matrix of this system is:

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3} \\
& R_{4}
\end{aligned} \quad\left(\begin{array}{rrrr|r}
1 & -2 & 1 & 1 & 0 \\
-1 & 0 & -3 & 1 & 0 \\
1 & 3 & 6 & -4 & 0 \\
-1 & 0 & -3 & 1 & 0
\end{array}\right)
$$

We can reduce this matrix to

$$
\left(\begin{array}{rrrr:r}
1 & 0 & 3 & -1 & 0 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which is in reduced row-echelon form. We therefore get that the system in (5) is equivalent to the system

$$
\left\{\begin{align*}
c_{1}+3 c_{3}-c_{4} & =0 \tag{6}\\
c_{2}+c_{3}-c_{4} & =0
\end{align*}\right.
$$

Solving for the leading variables in (6) yields the solutions

$$
\left\{\begin{array}{l}
c_{1}=3 t+s \tag{7}\\
c_{2}=t+s \\
c_{3}=-t \\
c_{4}=s
\end{array}\right.
$$

where t and s are arbitrary parameters. Taking $t=1$ and $s=0$ in (7) yields from (4) the linear relation

$$
3 v_{1}+v_{2}-v_{3}=\mathbf{0}
$$

which shows that $v_{3}=-3 v_{1}-v_{2}$; that is, $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.

Similarly, taking $t=0$ and $s=1$ in (7) yields

$$
v_{1}+v_{2}+v_{4}=\mathbf{0}
$$

which shows that $v_{4}=-v_{1}-v_{2}$; that is, $v_{4} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.
We then have that both v_{3} and v_{4} are in the span of $\left\{v_{1}, v_{2}\right\}$. Consequently,

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

from which we get that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

since span $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is the smallest subspace of \mathbb{R}^{3} which contains $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Combining this with

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

we conclude that

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

that is, $\left\{v_{1}, v_{2}\right\}$ spans $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
To see that $\left\{v_{1}, v_{2}\right\}$ is linearly independent, observe that v_{1} and v_{2} are not multiples of each other. We therefore conclude that $\left\{v_{1}, v_{2}\right\}$ is a basis for $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
3. Find a basis for the solution space of the system

$$
\left\{\begin{align*}
x_{1}-x_{2}+x_{3} & -x_{4}=0 \tag{8}\\
2 x_{1}-x_{2} & -2 x_{4}=0 \\
-x_{1}+x_{3} & +x_{4}=0
\end{align*}\right.
$$

and compute its dimension.
Solution: We first find the solution space, W, of the system. In order to do this, we reduce the augmented matrix of this system,

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned} \quad\left(\begin{array}{rrrr|r}
1 & -1 & 1 & -1 & 0 \\
2 & -1 & 0 & -2 & 0 \\
-1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

to its reduced row-echelon form:

$$
\left(\begin{array}{rrrr|r}
1 & 0 & -1 & -1 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Consequently, the system in (8) is equivalent to the system

$$
\left\{\begin{array}{c}
x_{1}-x_{3}-x_{4}=0 \tag{9}\\
x_{2}-2 x_{3}=0
\end{array}\right.
$$

Solving for the leading variables in the system in (9) we obtain the solutions

$$
\left\{\begin{array}{l}
x_{1}=t+s \\
x_{2}=2 t \\
x_{3}=t \\
x_{4}=s,
\end{array}\right.
$$

where t and s are arbitrary parameters. I then follows that the solution space of system (9) is

$$
W=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

Hence

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

is a basis for W and therefore $\operatorname{dim}(W)=2$.
4. Prove that any set of four vectors in \mathbb{R}^{3} must be linearly dependent.

Proof: Let v_{1}, v_{2}, v_{3} and v_{4} denote four vectors in \mathbb{R}^{3} and write

$$
v_{1}=\left(\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right) \quad \text { and } \quad v_{4}=\left(\begin{array}{c}
a_{14} \\
a_{24} \\
a_{34}
\end{array}\right) .
$$

Consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\mathbf{0} \tag{10}
\end{equation*}
$$

This equation translates into the homogeneous system

$$
\left\{\begin{array}{l}
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}+a_{14} c_{4}=0 \tag{11}\\
a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}+a_{24} c_{4}=0 \\
a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}+a_{34} c_{4}=0
\end{array}\right.
$$

of 3 linear equations in 4 unknowns. It then follows from the Fundamental Theorem for Homogeneous Linear Systems that system (11) has infinitely many solutions. Consequently, the vector equation in (10) has a nontrivial solution, and therefore the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly dependent.
5. Show that if the set $\left\{v_{1}, v_{2}\right\}$ is a linearly independent subset of \mathbb{R}^{n}, then so is the set $\left\{v_{1}, c v_{1}+v_{2}\right\}$, where c is a scalar, and, conversely, if $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is linearly independent, then so is $\left\{v_{1}, v_{2}\right\}$. Show also that $\operatorname{span}\left\{v_{1}, v_{2}\right\}=$ $\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}$.
(a) First we prove that $\left\{v_{1}, v_{2}\right\}$ is a linearly independent subset of \mathbb{R}^{n}, then so is the set $\left\{v_{1}, c v_{1}+v_{2}\right\}$,

Proof: Assume that $\left\{v_{1}, v_{2}\right\}$ is a linearly independent and consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2}\left(c v_{1}+v_{2}\right)=\mathbf{0} \tag{12}
\end{equation*}
$$

Applying the distributive and associative properties, the equation in (12) turns into

$$
\begin{equation*}
\left(c_{1}+c c_{2}\right) v_{1}+c_{2} v_{2}=\mathbf{0} \tag{13}
\end{equation*}
$$

It follows from (13) and the linear independence of $\left\{v_{1}, v_{2}\right\}$ that

$$
\left\{\begin{align*}
c_{1}+c c_{2} & =0 \tag{14}\\
c_{2} & =0
\end{align*}\right.
$$

The system in (14) has only the trivial solution: $c_{2}=c_{1}=0$. Hence, the vector equation in (12) has only the trivial solution and therefore the set $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is linearly independent.

Next, we prove the converse: If $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is linearly independent, then $\left\{v_{1}, v_{2}\right\}$ is a linearly independent.

Proof: Assume that $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is a linearly independent and consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=\mathbf{0} \tag{15}
\end{equation*}
$$

Adding $\mathbf{0}=c c_{2} v_{1}-c c_{2} v_{1}$ to the left-hand side of the equation in (15) and applying the distributive and associative properties we get

$$
\begin{equation*}
\left(c_{1}-c c_{2}\right) v_{1}+c_{2}\left(c v_{1}+v_{2}\right)=\mathbf{0} . \tag{16}
\end{equation*}
$$

It follows from (16) and the linear independence of $\left\{v_{1}, c v_{1}+v_{2}\right\}$ that

$$
\left\{\begin{align*}
c_{1}-c c_{2} & =0 \tag{17}\\
c_{2} & =0
\end{align*}\right.
$$

The system in (17) has only the trivial solution: $c_{2}=c_{1}=0$. Hence, the vector equation in (15) has only the trivial solution and therefore the set $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
(b) We prove that that $\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}$.

Proof: Let $W=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Then, W is a subspace which contains v_{1} and v_{2} and all their linear combinations; in particular, $c v_{1}+v_{2} \in W$. We then have that

$$
\left\{v_{1}, c v_{1}+v_{2}\right\} \subseteq W
$$

It then follows that

$$
\begin{equation*}
\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\} \subseteq W \tag{18}
\end{equation*}
$$

since $\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}$ is the smallest subspace of \mathbb{R}^{n} which contains $\left\{v_{1}, c v_{1}+v_{2}\right\}$. Ont the other hand, for any $u \in W$ there exist scalars c_{1} and c_{2} such that

$$
u=c_{1} v_{1}+c_{2} v_{2} .
$$

Consequently,

$$
\begin{aligned}
u & =c_{1} v_{1}+c_{2} v_{2}+c c_{2} v_{1}-c c_{2} v_{1} \\
& =\left(c_{1}-c c_{2}\right) v_{1}+c_{2}\left(c v_{1}+v_{2}\right),
\end{aligned}
$$

which shows that $u \in \operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}$; thus,

$$
u \in W \Rightarrow u \in \operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}
$$

or

$$
W \subseteq \operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}
$$

Combining this with (18) yields that

$$
W=\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}
$$

6. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent subset of \mathbb{R}^{n}. Suppose there exists $v \in \mathbb{R}^{n}$ such that $v \notin \operatorname{span}(S)$. Show that the set $S \cup\{v\}$ is linearly independent.

Proof: Assume that $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a linearly independent subset of \mathbb{R}^{n} and that $v \in \mathbb{R}^{n}$ is such that $v \notin \operatorname{span}(S)$. Suppose that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}+c v=0 . \tag{19}
\end{equation*}
$$

We first see that c in (19) must be 0 ; otherwise, $c \neq 0$ and we can solve for v in (19) to get that

$$
v=-\frac{c_{1}}{c} v_{1}-\frac{c_{2}}{c} v_{2}-\cdots-\frac{c_{k}}{c} v_{k},
$$

which shows that $v \in \in \operatorname{span}(S)$; this contradicts the assumption that $v \notin$ $\operatorname{span}(S)$. Hence, $c=0$ and so we obtain from (19) that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0 \tag{20}
\end{equation*}
$$

It follows from (20) and the assumption that S is linearly independent that

$$
c_{1}=c_{2}=\ldots=c_{k}=0
$$

We have therefore shown that (19) implies that

$$
c_{1}=c_{2}=\ldots=c_{k}=c=0
$$

Hence, the set $S \cup\{v\}$ is linearly independent.
7. Let S denote a nonempty subset of \mathbb{R}^{n}. Assume that there exists $v \in S$ such that $v \in \operatorname{span}(S \backslash\{v\})$. Show that

$$
\operatorname{span}(S \backslash\{v\})=\operatorname{span}(S)
$$

Proof: Let $S \subseteq \mathbb{R}^{n}$ and assume that there exists $v \in S$ such that $v \in \operatorname{span}(S \backslash\{v\})$. First observe that $S \backslash\{v\} \subseteq S$, so that

$$
S \backslash\{v\} \subseteq \operatorname{span}(S)
$$

Thus,

$$
\begin{equation*}
\operatorname{span}(S \backslash\{v\}) \subseteq \operatorname{span}(S) \tag{21}
\end{equation*}
$$

because $\operatorname{span}(S \backslash\{v\})$ is the smallest subspace of \mathbb{R}^{n} that contains $S \backslash\{v\}$.

Next, let $w \in S$. We have two possibilities: (i) $w \neq v$, or (ii) $w=v$. If $w \neq v$, then $w \in \operatorname{span}(S \backslash\{v\})$; on the other hand, if $w=v$, then, by assumption, $w \in \operatorname{span}(S \backslash\{v\})$. In both cases, $w \in \operatorname{span}(S \backslash\{v\})$. Thus,

$$
S \subseteq \operatorname{span}(S \backslash\{v\})
$$

It then follows that

$$
\begin{equation*}
\operatorname{span}(S) \subseteq \operatorname{span}(S \backslash\{v\}) \tag{22}
\end{equation*}
$$

because span (S) is the smallest subspace of \mathbb{R}^{n} that contains S.
Combining (21) and (22) yields what we were asked to prove.
8. Let J and H be planes in \mathbb{R}^{3} given by

$$
J=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, 2 x+3 y-6 z=0\right\} \quad \text { and } \quad H=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, x-2 y+z=0\right\} .
$$

(a) Give bases for J and H and compute their dimensions.

Solution: To find a basis for J, we solve the equation

$$
2 x+3 y+z=0
$$

to get the solution space $J=\operatorname{span}\left\{\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)\right\}$. Thus, the
set

$$
\left\{\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)\right\}
$$

is a basis for J and so $\operatorname{dim}(J)=2$.
Similarly, for H, we solve

$$
x-2 y+z=0
$$

and obtain that

$$
\left\{\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

is a basis for H; thus, $\operatorname{dim}(H)=2$.
(b) Give a basis for the subspace $J \cap H$ and compute $\operatorname{dim}(J \cap H)$.

Solution: Vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ in the intersection of J and H if they are solutions to the system of equations

$$
\begin{cases}2 x+3 y-6 z & =0 \tag{23}\\ x-2 y+z & =0\end{cases}
$$

Thus, to find $J \cap H$, we may elementary row operations on the augmented matrix

$$
\begin{aligned}
& R_{1} \\
& R_{2}
\end{aligned} \quad\left(\begin{array}{rrr|r}
2 & 3 & -6 & 0 \\
1 & -2 & 1 & 0
\end{array}\right)
$$

to obtain the reduced matrix

$$
\left(\begin{array}{ccc|c}
1 & 0 & -9 / 7 & 0 \\
0 & 1 & -8 / 7 & 0
\end{array}\right) .
$$

Thus, the system in (23) is equivalent to

$$
\left\{\begin{align*}
x-\frac{9}{7} z & =0 \tag{24}\\
y-\frac{8}{7} z & =0
\end{align*}\right.
$$

Solving for the leading variables in system (24) and setting $z=7 t$, where t is an arbitrary parameter, wee obtain that

$$
J \cap H=\operatorname{span}\left\{\left(\begin{array}{l}
9 \\
8 \\
7
\end{array}\right)\right\} .
$$

Thus, the set

$$
\left\{\left(\begin{array}{l}
9 \\
8 \\
7
\end{array}\right)\right\}
$$

is a basis for $J \cap H$ and, therefore, $\operatorname{dim}(J \cap H)=1$.
9. Let W be a subspace of \mathbb{R}^{n}.
(a) Prove that if $v \in W$ and $v \neq \mathbf{0}$, then $r v=s v$ implies that $r=s$, where r and s are scalars.

Proof: Suppose that $v \in W$, where W is a subspace of \mathbb{R}^{n}, and that $v \neq \mathbf{0}$. Suppose also that

$$
\begin{equation*}
r v=s v \tag{25}
\end{equation*}
$$

for some scalars r and s. Add $-s v$ on both sides of the vector equation in (25) and apply the distributive property to obtain

$$
\begin{equation*}
(r-s) v=\mathbf{0} \tag{26}
\end{equation*}
$$

Taking the Euclidean inner product with v of both sides of (26) yields

$$
\begin{equation*}
(r-s)\langle v, v\rangle=0 \tag{27}
\end{equation*}
$$

where we have used the bi-linearity of the inner product. It then follows form (27), the positive definiteness of the inner product, and the assumption that $v \neq 0$, that

$$
r-s=0
$$

and therefore $r=s$, which was to be shown.
(b) Prove that if W has more than one element, then W has infinitely many elements.

Proof: Since W has at least two elements, there has to be a vector, v, in W such that $v \neq \mathbf{0}$. Now, for any $t \in \mathbb{R}, t v \in W$ because W is closed under scalar multiplication. By part (a), $t_{1} v \neq t_{2} v$ for any $t_{1} \neq t_{2}$. Consequently, W contains infinitely many vectors.
10. Let W be a subspace of \mathbb{R}^{n} and S_{1} and S_{2} be subsets of W.
(a) Show that $\operatorname{span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.

Proof: First observe that $S_{1} \cap S_{2} \subseteq S_{1}$ and $S_{1} \cap S_{2} \subseteq S_{2}$. Consequently,

$$
\operatorname{span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{span}\left(S_{1}\right) \quad \text { and } \quad \operatorname{span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{span}\left(S_{2}\right)
$$

It then follows that

$$
\operatorname{span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)
$$

which was to be shown.
(b) Give an example in which $\operatorname{span}\left(S_{1} \cap S_{2}\right) \neq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.

Solution: Let $S_{1}=\left\{\binom{1}{0}\right\}$ and $S_{2}=\left\{\binom{-1}{0}\right\}$. Then, $S_{1} \cap$ $S_{2}=\emptyset$ so that $\operatorname{span}\left(S_{1} \cap S_{2}\right)=\{\mathbf{0}\}$, where $\mathbf{0}$ denotes the zero vector in \mathbb{R}^{2}.
On the other hand,

$$
\operatorname{span}\left(S_{1}\right)=\operatorname{span}\left(S_{2}\right)
$$

because $\binom{-1}{0}=-\binom{1}{0}$. Hence,

$$
\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)=\left\{\left.\binom{t}{0} \in \mathbb{R}^{2} \right\rvert\, t \in \mathbb{R}\right\} \neq\{\mathbf{0}\}
$$

11. Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{n}. We write $W_{1} \oplus W_{2}$ for the subspace $W_{1}+W_{2}$ for the special case in which $V=W_{1} \cap W_{2}=\{\mathbf{0}\}$. Show that every vector $v \in W_{1} \oplus W_{2}$ can be written in the form $v=v_{1}+v_{2}$, where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, in one and only one way; that is, if $v=u_{1}+u_{2}$, where $u_{1} \in W_{1}$ and $u_{2} \in W_{2}$, then $u_{1}=v_{1}$ and $u_{2}=v_{2}$.

Proof: Suppose that W_{1} and W_{2} are two subspaces of \mathbb{R}^{n} which have only the zero vector in common; that is, $W_{1} \cap W_{2}=\{0\}$. Let v be any vector in $W_{1}+W_{2}$. Then, $v=v_{1}+v_{2}$, where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$. Suppose that v can also be written as $v=u_{1}+u_{2}$, where $u_{1} \in W_{1}$ and $u_{2} \in W_{2}$. Then,

$$
v_{1}+v_{2}=u_{1}+u_{2},
$$

from which we get that

$$
\begin{equation*}
v_{1}-u_{1}=v_{2}-u_{2}, \tag{28}
\end{equation*}
$$

where $v_{1}-u_{1} \in W_{1}$ and $v_{2}-u_{2} \in W_{2}$ since W_{1} and W_{2} are subspaces of \mathbb{R}^{n}. It also follows from (28) that $v_{1}-u_{1} \in W_{2}$. Thus, $v_{1}-u_{1} \in W_{1} \cap W_{2}=\{\mathbf{0}\}$, which implies that

$$
v_{1}-u_{1}=\mathbf{0}
$$

or

$$
v_{1}=u_{1} .
$$

Similarly, we get that $v_{2}=u_{2}$.
12. Let $v_{1}, v_{2}, \ldots, v_{k}$ be nonzero vectors in \mathbb{R}^{n} that are mutually orthogonal; that is $\left\langle v_{i}, v_{j}\right\rangle=0$ for $i \neq j$. Prove that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Proof: Assume that $v_{1}, v_{2}, \ldots, v_{k}$ are nonzero vectors in \mathbb{R}^{n} that are mutually orthogonal.

Suppose that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0 \tag{29}
\end{equation*}
$$

Take inner product with v_{1} on both sides of (29) to get

$$
\begin{equation*}
\left\langle c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}, v_{1}\right\rangle=\left\langle 0, v_{1}\right\rangle . \tag{30}
\end{equation*}
$$

Next, apply the bi-linearity of the inner product on the left-hand side of (30) to get

$$
c_{1}\left\langle v_{1}, v_{1}\right\rangle+c_{2}\left\langle v_{2}, v_{1}\right\rangle+\cdots+c_{k}\left\langle v_{k}, v_{1}\right\rangle=0
$$

so that

$$
\begin{equation*}
c_{1}\left\|v_{1}\right\|^{2}=0 \tag{31}
\end{equation*}
$$

where we have used the orthogonality assumption.
It follows from (31) and the assumption that $v_{1} \neq 0$ that $c_{1}=0$. Similarly, taking the inner product with v_{j}, for $j=2,3, \ldots, k$, on both sides of (29) yields that $c_{j}=0$ for $j=2,3, \ldots, k$. We have therefore shown that (29) implies that

$$
c_{1}=c_{2}=\cdots=c_{k}=0
$$

Hence, the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.
13. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x-y+2 z=0\right\}$. Find a basis for W consisting of vectors that are mutually orthogonal.

Solution: We first note that $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right)\right\}$.
Set

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad v_{2}=\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right)
$$

We then have that $\left\{v_{1}, v_{2}\right\}$ is a basis for W and $\operatorname{dim}(W)=2$.

Next, we look for a basis, $\left\{w_{1}, w_{2}\right\}$, of W made up of orthogonal vectors.
Set $w_{1}=v_{1}$ and look for $w \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$ with the property that

$$
\begin{equation*}
\left\langle w, v_{1}\right\rangle=0 \tag{32}
\end{equation*}
$$

Write $w=c_{1} v_{1}+c_{2} v_{2}$ and substitute into (32) to get

$$
\left\langle c_{1} v_{1}+c_{2} v_{2}, v_{1}\right\rangle=0
$$

or

$$
\begin{equation*}
c_{1}\left\langle v_{1}, v_{1}\right\rangle+c_{2}\left\langle v_{2}, v_{1}\right\rangle=0, \tag{33}
\end{equation*}
$$

where we have used the bi-linearity of the inner product.
Next, compute

$$
\left\langle v_{1}, v_{1}\right\rangle=2 \quad \text { and } \quad\left\langle v_{2}, v_{1}\right\rangle=-2
$$

and substitute into (33) to get the equation

$$
2 c_{1}-2 c_{2}=0
$$

or

$$
\begin{equation*}
c_{1}-c_{2}=0 \tag{34}
\end{equation*}
$$

The equation in (34) has infinitely many solutions given by

$$
\begin{equation*}
\binom{c_{1}}{c_{2}}=t\binom{1}{1}, \quad \text { for } t \in \mathbb{R} \tag{35}
\end{equation*}
$$

Taking $t=1$ in (35) we get that $c_{1}=c_{2}=1$, so that

$$
w=v_{1}+v_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right)
$$

is lies in W and is orthogonal to w_{1}. Set

$$
w_{2}=\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right)
$$

Then, $\left\{w_{1}, w_{2}\right\}$ is a basis for W made up of orthogonal vectors.
14. Let $v \in \mathbb{R}^{n}$ and define $W=\left\{w \in \mathbb{R}^{n} \mid\langle w, v\rangle=0\right\}$.
(a) Prove that W is a subspace of \mathbb{R}^{n}.

Proof: First, observe that $W \neq \emptyset$ because $\langle\mathbf{0}, v\rangle=0$ and therefore $\mathbf{0} \in W$; thus, W is nonempty.
Next, we show that W is closed under addition and scalar multiplication.
To see that W is closed under scalar multiplication, observe that, by the bi-linearity property of the inner product, if $w \in W$, then

$$
\langle\langle v, t w\rangle=t\langle v, w\rangle=t \cdot 0=0
$$

for all $t \in \mathbb{R}$.
To show that W is closed under vector addition, let w_{1} and w_{2} be two vectors in W. Then, applying the bi-linearity property of the inner product again,

$$
\left\langle w_{1}+w_{2}, v\right\rangle=\left\langle w_{1}, v\right\rangle+\left\langle w_{2}, v\right\rangle=0+0=0
$$

hence, $w_{1}+w_{2} \in W$.
(b) Suppose that $v \neq 0$ and compute $\operatorname{dim}(W)$.

Solution: Let $B=\left\{w_{1}, w_{2}, \ldots w_{k}\right\}$ be a basis for W. Then, $\operatorname{dim}(W)=k$ and we would like to determine what k is.
First note that $v \notin \operatorname{span}(B)$. For, suppose that $v \in \operatorname{span}(B)=W$, then

$$
\langle v, v\rangle=0
$$

Thus, by the positive definiteness of the Euclidean inner product, it follows that $v=\mathbf{0}$, but we are assuming that $v \neq \mathbf{0}$. Consequently, the set

$$
B \cup\{v\}=\left\{w_{1}, w_{2}, \ldots w_{k}, v\right\}
$$

is linearly independent. We claim that $B \cup\{v\}$ also spans \mathbb{R}^{n}. To see why this is so, let $u \in \mathbb{R}^{n}$ be any vector in \mathbb{R}^{n}, and let

$$
t=\frac{\langle u, v\rangle}{\|v\|^{2}} .
$$

Write

$$
u=t v+(u-t v)
$$

and observe that $u-t v \in W$. To see why this is so, compute

$$
\begin{aligned}
\langle u-t v, v\rangle & =\langle u, v\rangle-t\langle v, v\rangle \\
& =\langle u, v\rangle-t\|v\|^{2} \\
& =\langle u, v\rangle-\frac{\langle u, v\rangle}{\|v\|^{2}}\|v\|^{2} \\
& =\langle u, v\rangle-\langle u, v\rangle \\
& =0 .
\end{aligned}
$$

Thus, $u-t v \in W$. It then follows that there exist scalars $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
u-t v=c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k} .
$$

Thus,

$$
u=c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k}+t v
$$

which shows that $u \in \operatorname{span}(B \cup\{v\})$. Consequently, $B \cup\{v\}$ spans \mathbb{R}^{n}. Therefore, since $B \cup\{v\}$ is also linearly independent, it forms a basis for \mathbb{R}^{n}. We then have that $B \cup\{v\}$ must have n vectors in it, since $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$; that is,

$$
k+1=n,
$$

from which we get that

$$
\operatorname{dim}(W)=n-1
$$

