Solutions to Review Problems for Exam 1

- 1. Consider the set $B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$.
 - (a) Show that B is a basis for \mathbb{R}^2 .

Proof: Given that $\dim(\mathbb{R}^2) = 2$ and that B contains two vectors, to prove that B is a basis for \mathbb{R}^2 , it suffices to prove that B is linearly independent. Thus, consider the vector equation

$$c_1 \begin{pmatrix} 1\\1 \end{pmatrix} + c_2 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}, \tag{1}$$

which is equivalent to the system

$$\begin{cases} c_1 - c_2 = 0\\ c_1 + c_2 = 0. \end{cases}$$
(2)

The system in (2) can be solved to yield the unique solution $c_1 = c_2 = 0$. Hence, the vector equation in (1) has only the trivial solution, and therefore B is linearly independent.

(b) Give the coordinates of the vector $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ relative to *B*. Interpret your result geometrically.

Solution: We look for scalars, c_1 and c_2 , such that

$$c_1 \begin{pmatrix} 1\\1 \end{pmatrix} + c_2 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}.$$
(3)

This is equivalent to solving the system

$$\begin{cases} c_1 - c_2 = 1 \\ c_1 + c_2 = 0. \end{cases}$$

To solve this system, we may reduce the corresponding augmented matrix,

 $\begin{pmatrix} 1 & -1 & | & 1 \\ 1 & 1 & | & 0 \end{pmatrix},$ $\begin{pmatrix} 1 & 0 & | & 1/2 \\ 0 & 1 & | & -1/2 \end{pmatrix}.$

to

We therefore get that the coordinate vector of $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ relative to *B* is

$$\left[\begin{pmatrix} 1\\0 \end{pmatrix} \right]_B = \begin{pmatrix} 1/2\\-1/2 \end{pmatrix}.$$

Denote the vectors in B by v_1 and v_2 , respectively and in that order, and denote the vector $\begin{pmatrix} 1\\0 \end{pmatrix}$ by v. Figure 1 shows the vector v as the sum of the vectors $\frac{1}{2}v_1$ and $-\frac{1}{2}v_2$.

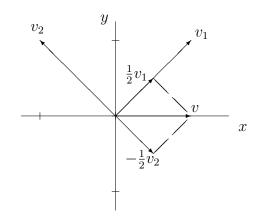


Figure 1: Coordinates relative to B

2. Give a basis for the span of the following set of vectors in \mathbb{R}^4

$$\left\{ \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} -2\\0\\3\\0 \end{pmatrix}, \begin{pmatrix} 1\\-3\\6\\-3 \end{pmatrix}, \begin{pmatrix} 1\\1\\-4\\1 \end{pmatrix} \right\}.$$

Solution: Denote the vectors in the set

$$\left\{ \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} -2\\0\\3\\0 \end{pmatrix}, \begin{pmatrix} 1\\-3\\6\\-3 \end{pmatrix}, \begin{pmatrix} 1\\1\\-4\\1 \end{pmatrix} \right\}$$

by v_1 , v_2 , v_3 and v_4 , respectively, we look for a linear vector relation of the form

$$c_1 v_1 + c_2 v_2 + c_3 v_3 + c_4 v_4 = \mathbf{0}.$$
 (4)

This leads to the system

$$\begin{pmatrix}
c_1 - 2c_2 + c_3 + c_4 &= 0 \\
-c_1 - 3c_3 + c_4 &= 0 \\
c_1 + 3c_2 + 6c_3 - 4c_4 &= 0 \\
-c_1 - 3c_3 + c_4 &= 0.
\end{cases}$$
(5)

The augmented matrix of this system is:

$$\begin{array}{ccccccc} R_1 & & \begin{pmatrix} 1 & -2 & 1 & 1 & | & 0 \\ R_2 & & \begin{pmatrix} -1 & 0 & -3 & 1 & | & 0 \\ 1 & 3 & 6 & -4 & | & 0 \\ -1 & 0 & -3 & 1 & | & 0 \end{pmatrix} \\ \end{array}$$

We can reduce this matrix to

which is in reduced row-echelon form. We therefore get that the system in (5) is equivalent to the system

$$\begin{cases} c_1 + 3c_3 - c_4 = 0 \\ c_2 + c_3 - c_4 = 0. \end{cases}$$
(6)

Solving for the leading variables in (6) yields the solutions

$$\begin{cases} c_1 = 3t + s \\ c_2 = t + s \\ c_3 = -t \\ c_4 = s, \end{cases}$$
(7)

where t and s are arbitrary parameters. Taking t = 1 and s = 0 in (7) yields from (4) the linear relation

$$3v_1 + v_2 - v_3 = \mathbf{0},$$

which shows that $v_3 = -3v_1 - v_2$; that is, $v_3 \in \operatorname{span}\{v_1, v_2\}$.

Similarly, taking t = 0 and s = 1 in (7) yields

$$v_1+v_2+v_4=\mathbf{0},$$

which shows that $v_4 = -v_1 - v_2$; that is, $v_4 \in \text{span}\{v_1, v_2\}$. We then have that both v_3 and v_4 are in the span of $\{v_1, v_2\}$. Consequently,

$$\{v_1, v_2, v_3, v_4\} \subseteq \operatorname{span}\{v_1, v_2\},\$$

from which we get that

$$\operatorname{span}\{v_1, v_2, v_3, v_4\} \subseteq \operatorname{span}\{v_1, v_2\},\$$

since span{ v_1, v_2, v_3, v_4 } is the smallest subspace of \mathbb{R}^3 which contains { v_1, v_2, v_3, v_4 }. Combining this with

$$\operatorname{span}\{v_1, v_2\} \subseteq \operatorname{span}\{v_1, v_2, v_3, v_4\},\$$

we conclude that

$$\operatorname{span}\{v_1, v_2\} = \operatorname{span}\{v_1, v_2, v_3, v_4\};$$

that is, $\{v_1, v_2\}$ spans span $\{v_1, v_2, v_3, v_4\}$.

To see that $\{v_1, v_2\}$ is linearly independent, observe that v_1 and v_2 are not multiples of each other. We therefore conclude that $\{v_1, v_2\}$ is a basis for span $\{v_1, v_2, v_3, v_4\}$.

3. Find a basis for the solution space of the system

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0\\ 2x_1 - x_2 - 2x_4 = 0\\ -x_1 + x_3 + x_4 = 0, \end{cases}$$
(8)

and compute its dimension.

Solution: We first find the solution space, W, of the system. In order to do this, we reduce the augmented matrix of this system,

$$\begin{array}{ccccccc} R_1 & & \begin{pmatrix} 1 & -1 & 1 & -1 & | & 0 \\ R_2 & & \begin{pmatrix} 2 & -1 & 0 & -2 & | & 0 \\ -1 & 0 & 1 & 1 & | & 0 \end{pmatrix}, \end{array}$$

Math 60. Rumbos

to its reduced row–echelon form:

Consequently, the system in (8) is equivalent to the system

$$\begin{cases} x_1 - x_3 - x_4 = 0 \\ x_2 - 2x_3 = 0. \end{cases}$$
(9)

Solving for the leading variables in the system in (9) we obtain the solutions f(x) = t + c

$$\begin{cases} x_1 = t + s \\ x_2 = 2t \\ x_3 = t \\ x_4 = s, \end{cases}$$

where t and s are arbitrary parameters. I then follows that the solution space of system (9) is

$$W = \operatorname{span} \left\{ \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\}.$$

Hence

$$\left\{ \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\}$$

is a basis for W and therefore $\dim(W) = 2$.

4. Prove that any set of four vectors in \mathbb{R}^3 must be linearly dependent.

Proof: Let v_1 , v_2 , v_3 and v_4 denote four vectors in \mathbb{R}^3 and write

$$v_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, \quad v_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}, \quad v_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \text{ and } v_4 = \begin{pmatrix} a_{14} \\ a_{24} \\ a_{34} \end{pmatrix}.$$

Consider the vector equation

$$c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = \mathbf{0}.$$
 (10)

This equation translates into the homogeneous system

$$\begin{cases}
 a_{11}c_1 + a_{12}c_2 + a_{13}c_3 + a_{14}c_4 = 0 \\
 a_{21}c_1 + a_{22}c_2 + a_{23}c_3 + a_{24}c_4 = 0 \\
 a_{31}c_1 + a_{32}c_2 + a_{33}c_3 + a_{34}c_4 = 0,
 \end{cases}$$
(11)

of 3 linear equations in 4 unknowns. It then follows from the Fundamental Theorem for Homogeneous Linear Systems that system (11) has infinitely many solutions. Consequently, the vector equation in (10) has a nontrivial solution, and therefore the set $\{v_1, v_2, v_3, v_4\}$ is linearly dependent.

- 5. Show that if the set $\{v_1, v_2\}$ is a linearly independent subset of \mathbb{R}^n , then so is the set $\{v_1, cv_1 + v_2\}$, where c is a scalar, and, conversely, if $\{v_1, cv_1 + v_2\}$ is linearly independent, then so is $\{v_1, v_2\}$. Show also that span $\{v_1, v_2\} =$ span $\{v_1, cv_1 + v_2\}$.
 - (a) First we prove that $\{v_1, v_2\}$ is a linearly independent subset of \mathbb{R}^n , then so is the set $\{v_1, cv_1 + v_2\}$,

Proof: Assume that $\{v_1, v_2\}$ is a linearly independent and consider the vector equation

$$c_1 v_1 + c_2 (c v_1 + v_2) = \mathbf{0}.$$
(12)

Applying the distributive and associative properties, the equation in (12) turns into

$$(c_1 + cc_2)v_1 + c_2v_2 = \mathbf{0}.$$
 (13)

It follows from (13) and the linear independence of $\{v_1, v_2\}$ that

$$\begin{cases} c_1 + cc_2 = 0 \\ c_2 = 0. \end{cases}$$
(14)

The system in (14) has only the trivial solution: $c_2 = c_1 = 0$. Hence, the vector equation in (12) has only the trivial solution and therefore the set $\{v_1, cv_1 + v_2\}$ is linearly independent.

Next, we prove the converse: If $\{v_1, cv_1 + v_2\}$ is linearly independent, then $\{v_1, v_2\}$ is a linearly independent.

Proof: Assume that $\{v_1, cv_1 + v_2\}$ is a linearly independent and consider the vector equation

$$c_1 v_1 + c_2 v_2 = \mathbf{0}. \tag{15}$$

Adding $\mathbf{0} = cc_2v_1 - cc_2v_1$ to the left-hand side of the equation in (15) and applying the distributive and associative properties we get

$$(c_1 - cc_2)v_1 + c_2(cv_1 + v_2) = \mathbf{0}.$$
(16)

It follows from (16) and the linear independence of $\{v_1, cv_1 + v_2\}$ that

$$\begin{cases} c_1 - cc_2 = 0 \\ c_2 = 0. \end{cases}$$
(17)

The system in (17) has only the trivial solution: $c_2 = c_1 = 0$. Hence, the vector equation in (15) has only the trivial solution and therefore the set $\{v_1, v_2\}$ is linearly independent.

(b) We prove that that $\operatorname{span}\{v_1, v_2\} = \operatorname{span}\{v_1, cv_1 + v_2\}.$

Proof: Let $W = \text{span}\{v_1, v_2\}$. Then, W is a subspace which contains v_1 and v_2 and all their linear combinations; in particular, $cv_1 + v_2 \in W$. We then have that

$$\{v_1, cv_1 + v_2\} \subseteq W$$

It then follows that

$$\operatorname{span}\{v_1, cv_1 + v_2\} \subseteq W,\tag{18}$$

since span $\{v_1, cv_1 + v_2\}$ is the smallest subspace of \mathbb{R}^n which contains $\{v_1, cv_1 + v_2\}$. Ont the other hand, for any $u \in W$ there exist scalars c_1 and c_2 such that

$$u = c_1 v_1 + c_2 v_2$$

Consequently,

$$u = c_1v_1 + c_2v_2 + cc_2v_1 - cc_2v_1 = (c_1 - cc_2)v_1 + c_2(cv_1 + v_2),$$

which shows that $u \in \text{span}\{v_1, cv_1 + v_2\}$; thus,

$$u \in W \Rightarrow u \in \operatorname{span}\{v_1, cv_1 + v_2\},\$$

or

$$W \subseteq \operatorname{span}\{v_1, cv_1 + v_2\}.$$

Combining this with (18) yields that

$$W = \operatorname{span}\{v_1, cv_1 + v_2\}$$

6. Let $S = \{v_1, v_2, \dots, v_k\}$ be a linearly independent subset of \mathbb{R}^n . Suppose there exists $v \in \mathbb{R}^n$ such that $v \notin \operatorname{span}(S)$. Show that the set $S \cup \{v\}$ is linearly independent.

Proof: Assume that $S = \{v_1, v_2, \ldots, v_k\}$ is a linearly independent subset of \mathbb{R}^n and that $v \in \mathbb{R}^n$ is such that $v \notin \text{span}(S)$. Suppose that

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k + cv = 0.$$
⁽¹⁹⁾

We first see that c in (19) must be 0; otherwise, $c \neq 0$ and we can solve for v in (19) to get that

$$v = -\frac{c_1}{c}v_1 - \frac{c_2}{c}v_2 - \dots - \frac{c_k}{c}v_k,$$

which shows that $v \in \text{span}(S)$; this contradicts the assumption that $v \notin \text{span}(S)$. Hence, c = 0 and so we obtain from (19) that

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0. (20)$$

It follows from (20) and the assumption that S is linearly independent that

$$c_1 = c_2 = \ldots = c_k = 0.$$

We have therefore shown that (19) implies that

$$c_1 = c_2 = \ldots = c_k = c = 0$$

Hence, the set $S \cup \{v\}$ is linearly independent.

7. Let S denote a nonempty subset of \mathbb{R}^n . Assume that there exists $v \in S$ such that $v \in \operatorname{span}(S \setminus \{v\})$. Show that

$$\operatorname{span}(S \setminus \{v\}) = \operatorname{span}(S).$$

Proof: Let $S \subseteq \mathbb{R}^n$ and assume that there exists $v \in S$ such that $v \in \text{span}(S \setminus \{v\})$. First observe that $S \setminus \{v\} \subseteq S$, so that

$$S \setminus \{v\} \subseteq \operatorname{span}(S).$$

Thus,

$$\operatorname{span}(S \setminus \{v\}) \subseteq \operatorname{span}(S) \tag{21}$$

because span $(S \setminus \{v\})$ is the smallest subspace of \mathbb{R}^n that contains $S \setminus \{v\}$.

Next, let $w \in S$. We have two possibilities: (i) $w \neq v$, or (ii) w = v. If $w \neq v$, then $w \in \text{span}(S \setminus \{v\})$; on the other hand, if w = v, then, by assumption, $w \in \text{span}(S \setminus \{v\})$. In both cases, $w \in \text{span}(S \setminus \{v\})$. Thus,

$$S \subseteq \operatorname{span}(S \setminus \{v\}).$$

It then follows that

$$\operatorname{span}(S) \subseteq \operatorname{span}(S \setminus \{v\}) \tag{22}$$

because span(S) is the smallest subspace of \mathbb{R}^n that contains S.

Combining (21) and (22) yields what we were asked to prove.

8. Let J and H be planes in \mathbb{R}^3 given by

$$J = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 2x + 3y - 6z = 0 \right\} \quad \text{and} \quad H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x - 2y + z = 0 \right\}.$$

(a) Give bases for J and H and compute their dimensions.

Solution: To find a basis for J, we solve the equation

$$2x + 3y + z = 0$$

to get the solution space $J = \operatorname{span} \left\{ \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\}$. Thus, the
set

$$\left\{ \begin{pmatrix} 3\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix} \right\}$$

is a basis for J and so $\dim(J) = 2$. Similarly, for H, we solve

$$x - 2y + z = 0$$

and obtain that

$$\left\{ \left(\begin{array}{c} 2\\1\\0 \end{array}\right), \left(\begin{array}{c} 1\\0\\-1 \end{array}\right) \right\}$$

is a basis for H; thus, $\dim(H) = 2$.

(b) Give a basis for the subspace $J \cap H$ and compute dim $(J \cap H)$.

Solution: Vectors $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in the intersection of J and H if they

are solutions to the system of equations

$$\begin{cases} 2x + 3y - 6z = 0\\ x - 2y + z = 0. \end{cases}$$
(23)

Thus, to find $J \cap H$, we may elementary row operations on the augmented matrix

$$\begin{array}{ccccc} R_1 & & \left(\begin{array}{ccccc} 2 & 3 & -6 & | & 0 \\ R_2 & & \left(\begin{array}{cccccc} 1 & -2 & 1 & | & 0 \end{array} \right) \end{array} \end{array}$$

to obtain the reduced matrix

Thus, the system in (23) is equivalent to

$$\begin{cases} x - \frac{9}{7}z = 0\\ y - \frac{8}{7}z = 0, \end{cases}$$
(24)

Solving for the leading variables in system (24) and setting z = 7t, where t is an arbitrary parameter, we obtain that

$$J \cap H = \operatorname{span} \left\{ \begin{pmatrix} 9\\8\\7 \end{pmatrix} \right\}.$$

Thus, the set

$$\left\{ \begin{pmatrix} 9\\8\\7 \end{pmatrix} \right\}$$

is a basis for $J \cap H$ and, therefore, $\dim(J \cap H) = 1$.

- 9. Let W be a subspace of \mathbb{R}^n .
 - (a) Prove that if $v \in W$ and $v \neq 0$, then rv = sv implies that r = s, where r and s are scalars.

Proof: Suppose that $v \in W$, where W is a subspace of \mathbb{R}^n , and that $v \neq \mathbf{0}$. Suppose also that

$$rv = sv \tag{25}$$

for some scalars r and s. Add -sv on both sides of the vector equation in (25) and apply the distributive property to obtain

$$(r-s)v = \mathbf{0}.\tag{26}$$

Taking the Euclidean inner product with v of both sides of (26) yields

$$(r-s)\langle v,v\rangle = 0, (27)$$

where we have used the bi–linearity of the inner product. It then follows form (27), the positive definiteness of the inner product, and the assumption that $v \neq \mathbf{0}$, that

r - s = 0

and therefore r = s, which was to be shown.

(b) Prove that if W has more than one element, then W has infinitely many elements.

Proof: Since W has at least two elements, there has to be a vector, v, in W such that $v \neq \mathbf{0}$. Now, for any $t \in \mathbb{R}$, $tv \in W$ because W is closed under scalar multiplication. By part (a), $t_1v \neq t_2v$ for any $t_1 \neq t_2$. Consequently, W contains infinitely many vectors.

- 10. Let W be a subspace of \mathbb{R}^n and S_1 and S_2 be subsets of W.
 - (a) Show that $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.

Proof: First observe that $S_1 \cap S_2 \subseteq S_1$ and $S_1 \cap S_2 \subseteq S_2$. Consequently,

$$\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1)$$
 and $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_2)$.

It then follows that

ŝ

$$\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2),$$

which was to be shown.

(b) Give an example in which $\operatorname{span}(S_1 \cap S_2) \neq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.

Solution: Let $S_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ and $S_2 = \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}$. Then, $S_1 \cap S_2 = \emptyset$ so that $\operatorname{span}(S_1 \cap S_2) = \{\mathbf{0}\}$, where **0** denotes the zero vector in \mathbb{R}^2 . On the other hand,

$$\operatorname{span}(S_1) = \operatorname{span}(S_2)$$

because $\begin{pmatrix} -1\\ 0 \end{pmatrix} = - \begin{pmatrix} 1\\ 0 \end{pmatrix}$. Hence,
$$\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \left\{ \begin{pmatrix} t\\ 0 \end{pmatrix} \in \mathbb{R}^2 \mid t \in \mathbb{R} \right\} \neq \{\mathbf{0}\}.$$

11. Let W_1 and W_2 be two subspaces of \mathbb{R}^n . We write $W_1 \oplus W_2$ for the subspace $W_1 + W_2$ for the special case in which $V = W_1 \cap W_2 = \{\mathbf{0}\}$. Show that every vector $v \in W_1 \oplus W_2$ can be written in the form $v = v_1 + v_2$, where $v_1 \in W_1$ and $v_2 \in W_2$, in one and only one way; that is, if $v = u_1 + u_2$, where $u_1 \in W_1$ and $u_2 \in W_2$, then $u_1 = v_1$ and $u_2 = v_2$.

Proof: Suppose that W_1 and W_2 are two subspaces of \mathbb{R}^n which have only the zero vector in common; that is, $W_1 \cap W_2 = \{\mathbf{0}\}$. Let v be any vector in $W_1 + W_2$. Then, $v = v_1 + v_2$, where $v_1 \in W_1$ and $v_2 \in W_2$. Suppose that v can also be written as $v = u_1 + u_2$, where $u_1 \in W_1$ and $u_2 \in W_2$. Then,

$$v_1 + v_2 = u_1 + u_2,$$

from which we get that

$$v_1 - u_1 = v_2 - u_2, \tag{28}$$

where $v_1 - u_1 \in W_1$ and $v_2 - u_2 \in W_2$ since W_1 and W_2 are subspaces of \mathbb{R}^n . It also follows from (28) that $v_1 - u_1 \in W_2$. Thus, $v_1 - u_1 \in W_1 \cap W_2 = \{\mathbf{0}\}$, which implies that

$$v_1-u_1=\mathbf{0},$$

or

$$v_1 = u_1$$

Similarly, we get that $v_2 = u_2$.

12. Let v_1, v_2, \ldots, v_k be nonzero vectors in \mathbb{R}^n that are mutually orthogonal; that is $\langle v_i, v_j \rangle = 0$ for $i \neq j$. Prove that $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

Proof: Assume that v_1, v_2, \ldots, v_k are nonzero vectors in \mathbb{R}^n that are mutually orthogonal.

Suppose that

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0. (29)$$

Take inner product with v_1 on both sides of (29) to get

$$\langle c_1 v_1 + c_2 v_2 + \dots + c_k v_k, v_1 \rangle = \langle 0, v_1 \rangle.$$

$$(30)$$

Next, apply the bi-linearity of the inner product on the left-hand side of (30) to get

$$c_1\langle v_1, v_1 \rangle + c_2\langle v_2, v_1 \rangle + \dots + c_k\langle v_k, v_1 \rangle = 0,$$

so that

$$c_1 \|v_1\|^2 = 0, (31)$$

where we have used the orthogonality assumption.

It follows from (31) and the assumption that $v_1 \neq 0$ that $c_1 = 0$. Similarly, taking the inner product with v_j , for $j = 2, 3, \ldots, k$, on both sides of (29) yields that $c_j = 0$ for $j = 2, 3, \ldots, k$. We have therefore shown that (29) implies that

$$c_1 = c_2 = \dots = c_k = 0.$$

Hence, the set $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

13. Let $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - y + 2z = 0 \right\}$. Find a basis for W consisting of

vectors that are mutually orthogonal.

Solution: We first note that
$$W = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Set

$$v_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -2\\0\\1 \end{pmatrix}$.

We then have that $\{v_1, v_2\}$ is a basis for W and dim(W) = 2.

Next, we look for a basis, $\{w_1, w_2\}$, of W made up of orthogonal vectors.

Set $w_1 = v_1$ and look for $w \in \text{span}(\{v_1, v_2\})$ with the property that

$$\langle w, v_1 \rangle = 0. \tag{32}$$

Write $w = c_1v_1 + c_2v_2$ and substitute into (32) to get

$$\langle c_1 v_1 + c_2 v_2, v_1 \rangle = 0,$$

or

$$c_1 \langle v_1, v_1 \rangle + c_2 \langle v_2, v_1 \rangle = 0, \tag{33}$$

where we have used the bi–linearity of the inner product. Next, compute

$$\langle v_1, v_1 \rangle = 2$$
 and $\langle v_2, v_1 \rangle = -2$

and substitute into (33) to get the equation

$$2c_1 - 2c_2 = 0,$$

or

$$c_1 - c_2 = 0. (34)$$

The equation in (34) has infinitely many solutions given by

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \text{for } t \in \mathbb{R}.$$
(35)

Taking t = 1 in (35) we get that $c_1 = c_2 = 1$, so that

$$w = v_1 + v_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix} + \begin{pmatrix} -2\\0\\1 \end{pmatrix} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$

is lies in W and is orthogonal to w_1 . Set

$$w_2 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}.$$

Then, $\{w_1, w_2\}$ is a basis for W made up of orthogonal vectors. \Box

- 14. Let $v \in \mathbb{R}^n$ and define $W = \{ w \in \mathbb{R}^n \mid \langle w, v \rangle = 0 \}.$
 - (a) Prove that W is a subspace of \mathbb{R}^n .

Proof: First, observe that $W \neq \emptyset$ because $\langle \mathbf{0}, v \rangle = 0$ and therefore $\mathbf{0} \in W$; thus, W is nonempty.

Next, we show that W is closed under addition and scalar multiplication. To see that W is closed under scalar multiplication, observe that, by the bi–linearity property of the inner product, if $w \in W$, then

$$\langle \langle v, tw \rangle = t \langle v, w \rangle = t \cdot 0 = 0$$

for all $t \in \mathbb{R}$.

To show that W is closed under vector addition, let w_1 and w_2 be two vectors in W. Then, applying the bi–linearity property of the inner product again,

$$\langle w_1 + w_2, v \rangle = \langle w_1, v \rangle + \langle w_2, v \rangle = 0 + 0 = 0;$$

hence, $w_1 + w_2 \in W$.

(b) Suppose that $v \neq \mathbf{0}$ and compute dim(W).

Solution: Let $B = \{w_1, w_2, \dots, w_k\}$ be a basis for W. Then, dim(W) = k and we would like to determine what k is. First note that $v \notin \operatorname{span}(B)$. For, suppose that $v \in \operatorname{span}(B) = W$, then

$$\langle v, v \rangle = 0.$$

Thus, by the positive definiteness of the Euclidean inner product, it follows that v = 0, but we are assuming that $v \neq 0$. Consequently, the set

$$B \cup \{v\} = \{w_1, w_2, \dots w_k, v\}$$

is linearly independent. We claim that $B \cup \{v\}$ also spans \mathbb{R}^n . To see why this is so, let $u \in \mathbb{R}^n$ be any vector in \mathbb{R}^n , and let

$$t = \frac{\langle u, v \rangle}{\|v\|^2}.$$

Write

$$u = tv + (u - tv),$$

and observe that $u - tv \in W$. To see why this is so, compute

$$\begin{aligned} \langle u - tv, v \rangle &= \langle u, v \rangle - t \langle v, v \rangle \\ &= \langle u, v \rangle - t \|v\|^2 \\ &= \langle u, v \rangle - \frac{\langle u, v \rangle}{\|v\|^2} \|v\|^2 \\ &= \langle u, v \rangle - \langle u, v \rangle \\ &= 0. \end{aligned}$$

Thus, $u-tv \in W$. It then follows that there exist scalars c_1, c_2, \ldots, c_k such that

$$u - tv = c_1 w_1 + c_2 w_2 + \dots + c_k w_k.$$

Thus,

$$u = c_1 w_1 + c_2 w_2 + \dots + c_k w_k + tv,$$

which shows that $u \in \text{span}(B \cup \{v\})$. Consequently, $B \cup \{v\}$ spans \mathbb{R}^n . Therefore, since $B \cup \{v\}$ is also linearly independent, it forms a basis for \mathbb{R}^n . We then have that $B \cup \{v\}$ must have n vectors in it, since $\dim(\mathbb{R}^n) = n$; that is,

$$k+1 = n,$$

from which we get that

$$\dim(W) = n - 1.$$