Exam 2 (Part I)

Friday, May 3, 2013
Name: \qquad

This is a closed book exam. Show all significant work and provide reasoning for all your assertions. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. Complete the following definitions:
(a) The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if ...
(b) An $n \times n$ matrix, A, is invertible if \ldots
(c) An $m \times n$ matrix, A, is singular if \ldots
(d) A scalar, λ, is an eigenvalue of the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ if \ldots
(e) If λ is an eigenvalue of a linear transformation, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenspace of T corresponding to $\lambda, E_{T}(\lambda)$, is ...
2. Let Q denote an $n \times n$ matrix.
(a) State what it means for Q to be an orthogonal matrix.
(b) Show that if Q is orthogonal, then $|\operatorname{det}(Q)|=1$.
(c) Show that if Q is orthogonal, then Q is invertible and give a formula for computing Q^{-1}.
3. Define a linear transformation, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which maps the standard basis vectors, e_{1} and e_{2}, in \mathbb{R}^{2} to the vectors

$$
w_{1}=\binom{2}{-1} \quad \text { and } \quad w_{2}=\binom{3}{-2},
$$

respectively.
(a) Give the matrix representation, M_{T}, for T relative to the standard basis in \mathbb{R}^{2}.
(b) Compute $\operatorname{det}(T)$. Does T preserve orientation?
(c) Show that T is invertible and compute the inverse of T.
(d) Verify that $\lambda=1$ is an eigenvalue of T and compute the corresponding eigenspace.

