Solutions to Part I of Exam 2

1. Answers:

(a) The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if

$$
f(v+w)=f(v)+f(w), \quad \text { for all } v, w \in \mathbb{R}^{n}
$$

and

$$
f(c v)=c f(v), \quad \text { for all } v \in \mathbb{R}^{n} \text { and all scalars } c .
$$

(b) An $n \times n$ matrix, A, is invertible if there exists an $n \times n$ matrix, B, such that

$$
B A=A B=I,
$$

where I denotes the $n \times n$ identity matrix.
(c) An $m \times n$ matrix, A, is singular if the equation

$$
A x=\mathbf{0}
$$

has nontrivial solutions.
(d) A scalar, λ, is an eigenvalue of the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ if the equation

$$
T(v)=\lambda v
$$

has nontrivial solutions.
(e) If λ is an eigenvalue of a linear transformation, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the eigenspace of T corresponding to $\lambda, E_{T}(\lambda)$, is the set of solutions to the equation

$$
T(v)=\lambda v
$$

2. Let Q denote an $n \times n$ matrix.
(a) State what it means for Q to be an orthogonal matrix.

Answer: The $n \times n$ matrix Q is orthogonal means that $Q^{T} Q=I$.
(b) Show that if Q is orthogonal, then $|\operatorname{det}(Q)|=1$.

Solution: Assume that Q is orthogonal. Then,

$$
\begin{equation*}
Q^{T} Q=I \tag{1}
\end{equation*}
$$

Taking the determinant on both sides of (1) yields

$$
\operatorname{det}\left(Q^{T} Q\right)=\operatorname{det}(I)
$$

from which we get

$$
\operatorname{det}\left(Q^{T}\right) \operatorname{det}(Q)=1
$$

or

$$
\operatorname{det}(Q) \operatorname{det}(Q)=1
$$

since $\operatorname{det}\left(Q^{T}\right)=\operatorname{det}(Q)$. Thus,

$$
\begin{equation*}
\operatorname{det}(Q)^{2}=1 \tag{2}
\end{equation*}
$$

Taking the positive square root on both sides of (2) yields

$$
|\operatorname{det}(Q)|=1
$$

which was to be shown.
(c) Show that if Q is orthogonal, then Q is invertible and give a formula for computing Q^{-1}.
Solution: Assume that Q is orthogonal. Then,

$$
Q^{T} Q=I
$$

which shows that Q has a left-inverse Q^{T}. It then follows that Q is invertible with

$$
Q^{-1}=Q^{T}
$$

3. Define a linear transformation, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which maps the standard basis vectors, e_{1} and e_{2}, in \mathbb{R}^{2} to the vectors

$$
w_{1}=\binom{2}{-1} \quad \text { and } \quad w_{2}=\binom{3}{-2}
$$

respectively.
(a) Give the matrix representation, M_{T}, for T relative to the standard basis in \mathbb{R}^{2}.
Answer: $M_{T}=\left(\begin{array}{rr}2 & 3 \\ -1 & -2\end{array}\right)$.
(b) Compute $\operatorname{det}(T)$. Does T preserve orientation?

Solution: $\operatorname{det}(T)=\operatorname{det}\left(M_{T}\right)=-4+3=-1$.
Since $\operatorname{det}(T)<0, T$ reverses orientation.
(c) Show that T is invertible and compute the inverse of T.

Solution: T is invertible because $\operatorname{det}(T) \neq 0$.
The inverse of T is given by $T^{-1} v=M_{T}^{-1} v$, for all $v \in \mathbb{R}^{2}$, where

$$
M_{T}^{-1}=\frac{1}{-1}\left(\begin{array}{rr}
-2 & -3 \\
1 & 2
\end{array}\right)=\left(\begin{array}{rr}
2 & 3 \\
-1 & -2
\end{array}\right) .
$$

Thus,

$$
T^{-1}\binom{x}{y}=\left(\begin{array}{rr}
2 & 3 \\
-1 & -2
\end{array}\right)\binom{x}{y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

or

$$
T^{-1}\binom{x}{y}=\binom{2 x+3 y}{-x-2 y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

(d) Verify that $\lambda=1$ is an eigenvalue of T and compute the corresponding eigenspace.
Solution: We verify that $T(v)=v$ has nontrivial solutions by solving the system

$$
\begin{equation*}
\left(M_{T}-I\right) v=\mathbf{0}, \quad \text { for } v \in \mathbb{R}^{2} \tag{3}
\end{equation*}
$$

We reduce the augmented matrix

$$
\left(\begin{array}{rr|r}
1 & 3 & 0 \\
-1 & -3 & 0
\end{array}\right)
$$

to

$$
\left(\begin{array}{cc|c}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so that the system in (3) is equivalent to the equation

$$
x+3 y=0
$$

which has solutions

$$
\binom{x}{y}=t\binom{3}{-1}, \quad \text { for } t \in \mathbb{R}
$$

Hence, $\lambda=1$ is an eigenvalue of T and the corresponding eigenspace is

$$
E_{T}(1)=\operatorname{span}\left\{\binom{3}{-1}\right\} .
$$

