Solutions to Part I of Exam 2

1. Answers:

(a) The function $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear if

f(v+w) = f(v) + f(w), for all $v, w \in \mathbb{R}^n$,

and

f(cv) = cf(v), for all $v \in \mathbb{R}^n$ and all scalars c.

(b) An $n \times n$ matrix, A, is invertible if there exists an $n \times n$ matrix, B, such that

$$BA = AB = I,$$

where I denotes the $n \times n$ identity matrix.

(c) An $m \times n$ matrix, A, is singular if the equation

$$Ax = \mathbf{0}$$

has nontrivial solutions.

(d) A scalar, λ , is an eigenvalue of the linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^n$ if the equation

$$T(v) = \lambda v$$

has nontrivial solutions.

(e) If λ is an eigenvalue of a linear transformation, $T \colon \mathbb{R}^n \to \mathbb{R}^n$, then the eigenspace of T corresponding to λ , $E_T(\lambda)$, is the set of solutions to the equation

$$T(v) = \lambda v.$$

- 2. Let Q denote an $n \times n$ matrix.
 - (a) State what it means for Q to be an orthogonal matrix. **Answer:** The $n \times n$ matrix Q is orthogonal means that $Q^T Q = I$. \Box
 - (b) Show that if Q is orthogonal, then $|\det(Q)| = 1$. Solution: Assume that Q is orthogonal. Then,

$$Q^T Q = I. (1)$$

Taking the determinant on both sides of (1) yields

$$\det(Q^T Q) = \det(I),$$

from which we get

$$\det(Q^T)\det(Q) = 1,$$

or

$$\det(Q)\det(Q) = 1,$$

since $det(Q^T) = det(Q)$. Thus,

$$\det(Q)^2 = 1. \tag{2}$$

Taking the positive square root on both sides of (2) yields

$$|\det(Q)| = 1,$$

which was to be shown.

(c) Show that if Q is orthogonal, then Q is invertible and give a formula for computing Q^{-1} .

Solution: Assume that Q is orthogonal. Then,

 $Q^T Q = I,$

which shows that Q has a left–inverse Q^T . It then follows that Q is invertible with $Q^{-1} = Q^T$.

3. Define a linear transformation, $T \colon \mathbb{R}^2 \to \mathbb{R}^2$, which maps the standard basis vectors, e_1 and e_2 , in \mathbb{R}^2 to the vectors

$$w_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$,

respectively.

(a) Give the matrix representation, M_T , for T relative to the standard basis in \mathbb{R}^2 .

Answer:
$$M_T = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$
.

(b) Compute det(T). Does T preserve orientation? **Solution**: det(T) = det(M_T) = -4 + 3 = -1. Since det(T) < 0, T reverses orientation.

Math 60. Rumbos

(c) Show that T is invertible and compute the inverse of T. **Solution**: T is invertible because $det(T) \neq 0$. The inverse of T is given by $T^{-1}v = M_T^{-1}v$, for all $v \in \mathbb{R}^2$, where

$$M_T^{-1} = \frac{1}{-1} \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}.$$

Thus,

or

$$T^{-1}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}2 & 3\\-1 & -2\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}, \quad \text{for all } \begin{pmatrix}x\\y\end{pmatrix} \in \mathbb{R}^2,$$
$$T^{-1}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}2x+3y\\-x-2y\end{pmatrix}, \quad \text{for all } \begin{pmatrix}x\\y\end{pmatrix} \in \mathbb{R}^2.$$

(d) Verify that $\lambda = 1$ is an eigenvalue of T and compute the corresponding eigenspace.

Solution: We verify that T(v) = v has nontrivial solutions by solving the system

$$(M_T - I)v = \mathbf{0}, \quad \text{for } v \in \mathbb{R}^2.$$
 (3)

We reduce the augmented matrix

$$\begin{pmatrix} 1 & 3 & | & 0 \\ -1 & -3 & | & 0 \end{pmatrix}$$

 to

$$\left(\begin{array}{rrrr}1&3&\mid&0\\0&0&\mid&0\end{array}\right);$$

so that the system in (3) is equivalent to the equation

$$x + 3y = 0,$$

which has solutions

$$\begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \quad \text{for } t \in \mathbb{R}.$$

Hence, $\lambda = 1$ is an eigenvalue of T and the corresponding eigenspace is

$$E_T(1) = \operatorname{span}\left\{ \begin{pmatrix} 3\\ -1 \end{pmatrix} \right\}.$$