## Exam 2 (Part II)

Friday, May 3, 2013
Name:
This is the out-of-class portion of Exam 1. It is a closed-book and closed-notes exam. Students are expected to work individually on these problems. You may not consult with anyone, or the online notes in the course's website, or any other website. Show all significant work and provide reasoning for all your assertions.
Write your name on this page and staple it to your solutions. Turn in your solutions at the start of class on Monday, May 6, 2013.
I have read and agree to these instructions. Signature: $\qquad$

1. Let $A=\left(\begin{array}{lll}-1 & 2 & -1 \\ -6 & 7 & -4 \\ -6 & 6 & -4\end{array}\right)$.
(a) Verify that $A$ has three distinct eigenvalues, $\lambda_{1}, \lambda_{2}$, and $\lambda_{3}$; list them in increasing order: $\lambda_{1}<\lambda_{2}<\lambda_{3}$. Compute $\lambda_{1}, \lambda_{2}$, and $\lambda_{3}$, and find corresponding eigenvectors $v_{1}, v_{2}$ and $v_{3}$.
(b) Let $v_{1}, v_{2}$ and $v_{3}$ be the eigenvectors of $A$ computed in part (a). Explain why the set $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ forms a basis for $\mathbb{R}^{3}$.
(c) Set $Q=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$; that is, $Q$ is the matrix whose columns are the eigenvectors of $A$ in the ordered basis $\mathcal{B}$. Explain why $Q$ is invertible and compute $Q^{-1}$.
(d) Define $J=Q^{-1} A Q$. Compute $J$. What do you discover?
2. Let $u_{1}$ and $u_{2}$ denote a unit vector in $\mathbb{R}^{n}$, for $n \geqslant 2$, that are orthogonal to each other; i.e., $\left\langle u_{1}, u_{2}\right\rangle=0$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in $\mathbb{R}^{n}$. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}$ for all $v \in \mathbb{R}^{n}$.
(a) Verify that $f$ is linear.
(b) Give the image, $\mathcal{I}_{f}$, and null space, $\mathcal{N}_{f}$, of $f$, and compute $\operatorname{dim}\left(\mathcal{I}_{f}\right)$.
(c) The Dimension Theorem for a linear transformations, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, states that

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

Use the Dimension Theorem to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.

