## Solutions to Part II of Exam 2

1. Let $A=\left(\begin{array}{lll}-1 & 2 & -1 \\ -6 & 7 & -4 \\ -6 & 6 & -4\end{array}\right)$.
(a) Verify that $A$ has three distinct eigenvalues, $\lambda_{1}, \lambda_{2}$, and $\lambda_{3}$; list them in increasing order: $\lambda_{1}<\lambda_{2}<\lambda_{3}$. Compute $\lambda_{1}, \lambda_{2}$, and $\lambda_{3}$, and find corresponding eigenvectors $v_{1}, v_{2}$ and $v_{3}$.
Solution: Compute

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-1-\lambda & 2 & -1 \\
-6 & 7-\lambda & -4 \\
-6 & 6 & -4-\lambda
\end{array}\right|
$$

to get

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+2 \lambda^{2}+\lambda-2
$$

which can be factored into

$$
\operatorname{det}(A-\lambda I)=-\left(\lambda^{2}-1\right)(\lambda-2)
$$

or

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=-(\lambda+1)(\lambda-1)(\lambda-2) \tag{1}
\end{equation*}
$$

It follows from (1) that $A$ has three distinct eigenvalues

$$
\lambda_{1}=-1, \quad \lambda_{2}=1 \quad \text { and } \quad \lambda_{3}=2 .
$$

In order to find an eigenvector corresponding to $\lambda_{1}$, solve the system

$$
\begin{equation*}
\left(A-\lambda_{1} I\right) v=\mathbf{0} \tag{2}
\end{equation*}
$$

by reducing the augmented matrix

$$
\left(\begin{array}{rrr|r}
0 & 2 & -1 & 0 \\
-6 & 8 & -4 & 0 \\
-6 & 6 & -3 & 0
\end{array}\right)
$$

to

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & -1 / 2 & 0
\end{array}\right)
$$

by means of elementary row operations. It then follows that the system in (2) is equivalent to the system

$$
\left\{\begin{array}{rl}
x_{1} & \\
& =0 \\
& x_{2}-\frac{1}{2} x_{3}
\end{array}=0\right.
$$

which has solutions

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \quad \text { for } t \in \mathbb{R}
$$

It then follows that

$$
v_{1}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

is an eigenvector corresponding to $\lambda_{1}=-1$.
Similar calculations can be used to show that

$$
v_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

is an eigenvector corresponding to $\lambda_{2}=1$, and

$$
v_{3}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

is an eigenvector corresponding to $\lambda_{3}=2$.
(b) Let $v_{1}, v_{2}$ and $v_{3}$ be the eigenvectors of $A$ computed in part (a). Explain why the set $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ forms a basis for $\mathbb{R}^{3}$.
Solution: The set $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent because $v_{1}, v_{2}$ and $v_{3}$ are eigenvectors of $A$ corresponding to distinct eigenvalues.
(c) Set $Q=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$; that is, $Q$ is the matrix whose columns are the eigenvectors of $A$ in the ordered basis $\mathcal{B}$. Explain why $Q$ is invertible and compute $Q^{-1}$.
Solution: The matrix $Q=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$ is invertible because the columns are linearly independent.
To compute $Q^{-1}$, perform elementary row operations on the augmented matrix

$$
\left[\begin{array}{l|l}
Q & I
\end{array}\right],
$$

where $I$ is the $3 \times 3$ identity matrix to get

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & -1 & 2 \\
0 & 1 & 0 & \mid & 3 & -2
\end{array}\right)
$$

so that

$$
Q^{-1}=\left(\begin{array}{rrc}
1 & -1 & 2 \\
3 & -2 & 1 \\
-2 & 2 & -1
\end{array}\right)
$$

(d) Define $J=Q^{-1} A Q$. Compute $J$. What do you discover?

Solution: Compute

$$
\begin{aligned}
J & =Q^{-1} A Q \\
& =\left(\begin{array}{rrr}
1 & -1 & 2 \\
3 & -2 & 1 \\
-2 & 2 & -1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & -1 \\
-6 & 7 & -4 \\
-6 & 6 & -4
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 2 \\
2 & 0 & 1
\end{array}\right)
\end{aligned}
$$

to get

$$
J=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Thus, $J$ is a diagonal matrix with the eigenvalues of $A$ along the main diagonal; that is,

$$
J=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

2. Let $u_{1}$ and $u_{2}$ denote a unit vector in $\mathbb{R}^{n}$, for $n \geqslant 2$, that are orthogonal to each other; i.e., $\left\langle u_{1}, u_{2}\right\rangle=0$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in $\mathbb{R}^{n}$. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}$ for all $v \in \mathbb{R}^{n}$.
(a) Verify that $f$ is linear.

Solution: For $v, w \in \mathbb{R}^{n}$, compute

$$
\begin{aligned}
f(v+w) & =\left\langle v+w, u_{1}\right\rangle u_{1}+\left\langle v+w, u_{2}\right\rangle u_{2} \\
& =\left(\left\langle v, u_{1}\right\rangle+\left\langle w, u_{1}\right\rangle\right) u_{1}+\left(\left\langle v, u_{2}\right\rangle+\left\langle w, u_{2}\right\rangle\right) u_{2} \\
& =\left\langle v, u_{1}\right\rangle u_{1}+\left\langle w, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}+\left\langle w, u_{2}\right\rangle u_{2} \\
& =\left(\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}\right)+\left(\left\langle w, u_{1}\right\rangle u_{1}+\left\langle w, u_{2}\right\rangle u_{2}\right) \\
& =f(v)+f(w) .
\end{aligned}
$$

Similarly, for a scalar $c$ and $v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
f(c v) & =\left\langle c v, u_{1}\right\rangle u_{1}+\left\langle c v, u_{2}\right\rangle u_{2} \\
& =c\left\langle v, u_{1}\right\rangle u_{1}+c\left\langle v, u_{2}\right\rangle u_{2} \\
& =c\left(\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}\right) \\
& =c f(v)
\end{aligned}
$$

(b) Give the image, $\mathcal{I}_{f}$, and null space, $\mathcal{N}_{f}$, of $f$, and compute $\operatorname{dim}\left(\mathcal{I}_{f}\right)$.

Solution: The image of $f$ is the set

$$
\mathcal{I}_{f}=\left\{w \in \mathbb{R}^{n} \mid w=f(v) \text { for some } v \in \mathbb{R}^{n}\right\} .
$$

We claim that $\mathcal{I}_{f}=\operatorname{span}\left\{u_{1}, u_{2}\right\}$. To see why this is so, first observe that

$$
\begin{equation*}
f\left(u_{1}\right)=\left\langle u_{1}, u_{1}\right\rangle u_{1}+\left\langle u_{1}, u_{2}\right\rangle u_{2}=\left\|u_{1}\right\|^{2} u_{1}=u_{1} \tag{3}
\end{equation*}
$$

since $u_{1}$ is a unit vector that is orthogonal to $u_{2}$. Similarly,

$$
\begin{equation*}
f\left(u_{2}\right)=u_{2} \tag{4}
\end{equation*}
$$

Let $w \in \operatorname{span}\left\{u_{1}, u_{2}\right\}$; then $w=c_{1} u_{1}+c_{2} u_{2}$, for some scalars $c_{1}$ and $c_{2}$. Now, by virtue of (3) and (4) the linearity of $f$,

$$
w=c_{1} u_{1}+c_{2} u_{2}=c_{1} f\left(u_{1}\right)+c_{2} f\left(u_{2}\right)=f\left(c_{1} u_{1}+c_{2} u_{2}\right)
$$

which shows that $w \in \mathcal{I}_{f}$. We have therefore established that

$$
w \in \operatorname{span}\left\{u_{1}, u_{2}\right\} \Rightarrow w \in \mathcal{I}_{f}
$$

that is,

$$
\begin{equation*}
\operatorname{span}\left\{u_{1}, u_{2}\right\} \subseteq \mathcal{I}_{f} . \tag{5}
\end{equation*}
$$

Next, suppose that $w \in \mathcal{I}_{f}$; then, $w=f(v)$ for some $v \in \mathbb{R}^{n}$, so that

$$
w=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2} \in \operatorname{span}\{u\}
$$

Thus,

$$
\begin{equation*}
\mathcal{I}_{f} \subseteq \operatorname{span}\left\{u_{1}, u_{2}\right\} \tag{6}
\end{equation*}
$$

Combining (5) and (6) yields that

$$
\mathcal{I}_{f}=\operatorname{span}\left\{u_{1}, u_{2}\right\} .
$$

Now, since $u_{1}$ and $u_{2}$ are orthogonal, they are linearly independent. It then follows that

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{I}_{f}\right)=2 \tag{7}
\end{equation*}
$$

The null space of $f$ is the set

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid f(v)=\mathbf{0}\right\} .
$$

Thus,

$$
\begin{array}{ll}
v \in \mathcal{N}_{f} & \text { iff }\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}=\mathbf{0} \\
& \text { iff }\left\langle v, u_{1}\right\rangle=0 \text { and }\left\langle v, u_{2}\right\rangle=0,
\end{array}
$$

since the set $\left\{u_{1}, u_{2}\right\}$ is linearly independent. It then follows that

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid\left\langle v, u_{1}\right\rangle=0 \text { and }\left\langle v, u_{2}\right\rangle=0\right\} ;
$$

that is, $\mathcal{N}_{f}$ is the space of vectors which are orthogonal to $u_{1}$ and $u_{2}$.
(c) The Dimension Theorem for a linear transformations, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, states that

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

Use the Dimension Theorem to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.
Solution: Using the dimension theorem and (7) we get that

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)+2=n,
$$

which implies that

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)=n-2
$$

