Solutions to Part II of Exam 2

1. Let
$$A = \begin{pmatrix} -1 & 2 & -1 \\ -6 & 7 & -4 \\ -6 & 6 & -4 \end{pmatrix}$$
.

(a) Verify that A has three distinct eigenvalues, λ_1 , λ_2 , and λ_3 ; list them in increasing order: $\lambda_1 < \lambda_2 < \lambda_3$. Compute λ_1 , λ_2 , and λ_3 , and find corresponding eigenvectors v_1 , v_2 and v_3 .

Solution: Compute

$$\det(A - \lambda I) = \begin{vmatrix} -1 - \lambda & 2 & -1 \\ -6 & 7 - \lambda & -4 \\ -6 & 6 & -4 - \lambda \end{vmatrix}$$

to get

$$\det(A - \lambda I) = -\lambda^3 + 2\lambda^2 + \lambda - 2,$$

which can be factored into

$$\det(A - \lambda I) = -(\lambda^2 - 1)(\lambda - 2),$$

or

$$\det(A - \lambda I) = -(\lambda + 1)(\lambda - 1)(\lambda - 2).$$
(1)

It follows from (1) that A has three distinct eigenvalues

$$\lambda_1 = -1, \quad \lambda_2 = 1 \quad \text{and} \quad \lambda_3 = 2.$$

In order to find an eigenvector corresponding to λ_1 , solve the system

$$(A - \lambda_1 I)v = \mathbf{0} \tag{2}$$

by reducing the augmented matrix

$$\begin{pmatrix} 0 & 2 & -1 & | & 0 \\ -6 & 8 & -4 & | & 0 \\ -6 & 6 & -3 & | & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & -1/2 & | & 0 \end{pmatrix}$$

 to

by means of elementary row operations. It then follows that the system in (2) is equivalent to the system

$$\begin{cases} x_1 &= 0; \\ x_2 - \frac{1}{2}x_3 &= 0, \end{cases}$$

which has solutions

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad \text{for } t \in \mathbb{R}.$$

It then follows that

$$v_1 = \begin{pmatrix} 0\\1\\2 \end{pmatrix}$$

is an eigenvector corresponding to $\lambda_1 = -1$. Similar calculations can be used to show that

$$v_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

is an eigenvector corresponding to $\lambda_2 = 1$, and

$$v_3 = \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}$$

is an eigenvector corresponding to $\lambda_3 = 2$.

- (b) Let v_1 , v_2 and v_3 be the eigenvectors of A computed in part (a). Explain why the set $\mathcal{B} = \{v_1, v_2, v_3\}$ forms a basis for \mathbb{R}^3 . **Solution**: The set $\mathcal{B} = \{v_1, v_2, v_3\}$ is linearly independent because v_1, v_2 and v_3 are eigenvectors of A corresponding to distinct eigenvalues. \Box
- (c) Set $Q = [v_1 \ v_2 \ v_3]$; that is, Q is the matrix whose columns are the eigenvectors of A in the ordered basis \mathcal{B} . Explain why Q is invertible and compute Q^{-1} .

Solution: The matrix $Q = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ is invertible because the columns are linearly independent.

To compute Q^{-1} , perform elementary row operations on the augmented matrix

$$[Q \mid I],$$

where I is the 3×3 identity matrix to get

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & -1 & 2 \\ 0 & 1 & 0 & | & 3 & -2 & 1 \\ 0 & 0 & 1 & | & -2 & 2 & -1 \end{pmatrix},$$

so that

$$Q^{-1} = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -2 & 1 \\ -2 & 2 & -1 \end{pmatrix}.$$

(d) Define $J = Q^{-1}AQ$. Compute J. What do you discover? Solution: Compute

$$J = Q^{-1}AQ$$
$$= \begin{pmatrix} 1 & -1 & 2 \\ 3 & -2 & 1 \\ -2 & 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 2 & -1 \\ -6 & 7 & -4 \\ -6 & 6 & -4 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

to get

$$J = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}.$$

Thus, J is a diagonal matrix with the eigenvalues of A along the main diagonal; that is,

$$J = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}.$$

- 2. Let u_1 and u_2 denote a unit vector in \mathbb{R}^n , for $n \ge 2$, that are orthogonal to each other; i.e., $\langle u_1, u_2 \rangle = 0$, where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n . Define $f \colon \mathbb{R}^n \to \mathbb{R}^n$ by $f(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2$ for all $v \in \mathbb{R}^n$.
 - (a) Verify that f is linear.

Solution: For $v, w \in \mathbb{R}^n$, compute

$$f(v+w) = \langle v+w, u_1 \rangle u_1 + \langle v+w, u_2 \rangle u_2$$

= $(\langle v, u_1 \rangle + \langle w, u_1 \rangle) u_1 + (\langle v, u_2 \rangle + \langle w, u_2 \rangle) u_2$
= $\langle v, u_1 \rangle u_1 + \langle w, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \langle w, u_2 \rangle u_2$
= $(\langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2) + (\langle w, u_1 \rangle u_1 + \langle w, u_2 \rangle u_2)$
= $f(v) + f(w).$

Similarly, for a scalar c and $v \in \mathbb{R}^n$,

$$f(cv) = \langle cv, u_1 \rangle u_1 + \langle cv, u_2 \rangle u_2$$

= $c \langle v, u_1 \rangle u_1 + c \langle v, u_2 \rangle u_2$
= $c(\langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2)$
= $cf(v).$

(b) Give the image, \mathcal{I}_f , and null space, \mathcal{N}_f , of f, and compute dim (\mathcal{I}_f) . **Solution**: The image of f is the set

$$\mathcal{I}_f = \{ w \in \mathbb{R}^n \mid w = f(v) \text{ for some } v \in \mathbb{R}^n \}.$$

We claim that $\mathcal{I}_f = \operatorname{span}\{u_1, u_2\}$. To see why this is so, first observe that

$$f(u_1) = \langle u_1, u_1 \rangle u_1 + \langle u_1, u_2 \rangle u_2 = ||u_1||^2 u_1 = u_1,$$
(3)

since u_1 is a unit vector that is orthogonal to u_2 . Similarly,

$$f(u_2) = u_2 \tag{4}$$

Let $w \in \text{span}\{u_1, u_2\}$; then $w = c_1u_1 + c_2u_2$, for some scalars c_1 and c_2 . Now, by virtue of (3) and (4) the linearity of f,

$$w = c_1 u_1 + c_2 u_2 = c_1 f(u_1) + c_2 f(u_2) = f(c_1 u_1 + c_2 u_2),$$

which shows that $w \in \mathcal{I}_f$. We have therefore established that

$$w \in \operatorname{span}\{u_1, u_2\} \Rightarrow w \in \mathcal{I}_f;$$

that is,

$$\operatorname{span}\{u_1, u_2\} \subseteq \mathcal{I}_f. \tag{5}$$

Next, suppose that $w \in \mathcal{I}_f$; then, w = f(v) for some $v \in \mathbb{R}^n$, so that

$$w = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 \in \operatorname{span}\{u\}$$

Spring 2013 5

Thus,

$$\mathcal{I}_f \subseteq \operatorname{span}\{u_1, u_2\}.$$
 (6)

Combining (5) and (6) yields that

$$\mathcal{I}_f = \operatorname{span}\{u_1, u_2\}$$

Now, since u_1 and u_2 are orthogonal, they are linearly independent. It then follows that

$$\dim(\mathcal{I}_f) = 2. \tag{7}$$

The null space of f is the set

$$\mathcal{N}_f = \{ v \in \mathbb{R}^n \mid f(v) = \mathbf{0} \}.$$

Thus,

$$v \in \mathcal{N}_f \quad \text{iff} \quad \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 = \mathbf{0} \\ \text{iff} \quad \langle v, u_1 \rangle = 0 \text{ and } \langle v, u_2 \rangle = 0,$$

since the set $\{u_1, u_2\}$ is linearly independent. It then follows that

$$\mathcal{N}_f = \{ v \in \mathbb{R}^n \mid \langle v, u_1 \rangle = 0 \text{ and } \langle v, u_2 \rangle = 0 \};$$

that is, \mathcal{N}_f is the space of vectors which are orthogonal to u_1 and u_2 . \Box

(c) The Dimension Theorem for a linear transformations, $T\colon \mathbb{R}^n\to \mathbb{R}^m,$ states that

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n.$$

Use the Dimension Theorem to compute $\dim(\mathcal{N}_f)$. Solution: Using the dimension theorem and (7) we get that

$$\dim(\mathcal{N}_f) + 2 = n,$$

which implies that

$$\dim(\mathcal{N}_f) = n - 2.$$